[book_name]历算全书 [book_author]梅文鼎 [book_date]明代 [book_copyright]玄之又玄 謂之大玄=學海無涯君是岸=書山絕頂吾为峰=大玄古籍書店獨家出版 [book_type]天文地理,天文,数学,完结 [book_length]699816 [book_dec]六十二卷。梅文鼎(1633—1721)撰。梅文鼎字定九,号勿庵。安徽宣城人。著书八十多种,主要成就在天文学、数学方面。是书汇集梅氏所著二十九种,言历者居前,言算者列后。内容大体可分三部分:一是历学理论,如《历学疑问》、《历学问答》等论及古今历学源流、正误及中西二法与回回历之异同,其《历学骈枝》 乃对 《大统历》的解说; 二是历学推步,如《弧三角举要》乃用浑象表弧三角之形式,《平立定三差说》乃推七政赢缩之故,《七政细草》载推步日月五星法及恒星交宫过度之术,《交食蒙求》乃推算交食之法等;三是算学,介绍中国古代数学和西方算法,如《古算衍略》、《方程论》、《勾股阐微》、《三角法举要》,其《几何补编》四卷,有若干创见。该书有兼济堂雍正本、光绪本,《梅氏丛书辑要》(乾隆本、同治本、光绪石印本) 收录不全。 [book_img]Z_11175.jpg [book_title]提要 钦定四库全书     子部六 厯算全书       天文算法类一【推歩之属】提要 【臣】等谨厯算全书六十卷 国朝梅文鼎撰文鼎字定九宣城人笃志嗜古尤精厯算之学康熙四十一年大学士李光地尝以其厯学疑问进呈防 圣祖仁皇帝南廵于德州 召见 御书积学参微四字赐之以年老遣归嗣 诏修乐律厯算书下江南总督征其孙防成入侍直 律吕正义书成复驿致 命校勘后年九十余终于家 特命织造曹頫爲经纪其防至今传为稽古之至荣所着厯算诸书李光地尝刻其七种余多晚年纂述或已订成帙或略具草稿魏荔彤求得其本以属无锡杨作枚校正作枚遂附以已説并为补所未备而刋行之凡二十九种名之曰厯算全书然序次错杂未得要领谨重加编次以立厯者居前而以言算者列于后首曰厯学疑问论厯学古今疏宻及中西二法与囘囘厯之异同即尝防 圣祖仁皇帝亲加定者谨以冠之简编次曰厯学疑问补亦杂论厯法纲领次曰厯学答问乃与一时公卿大夫以厯法往来问答之辞次曰弧三角举要乃用浑象表弧三角之形式次曰环中黍尺乃弧三角以角代算之法次曰岁周地度合考乃考高卑嵗实及西国年月地度弧角里差次曰平立定三差説推七政赢缩之故次曰冬至考用统天大明授时三法考春秋以来冬至次曰诸方日乃以北极高二十度至四十二度各地日按时节为立成表次曰五星纪要总论五星行度次曰火星本法専论火星迟疾次曰七政细草载推步日月五星法及恒星交宫过度之术次曰揆日星纪要列直江南河南陜西四省表景并三垣列宿经纬定为立成表次曰二铭补注解仰仪铭简仪铭次曰厯学骈枝乃所注大统厯法次曰交防管见乃以交食方位向称南北东西者改为上下左右次曰交食防求乃推算法数次曰古算衍略次曰筹算次曰茟算次曰度算释例俱为歩算之根源次曰方程论次曰勾股阐微次曰三角法举要次曰觧割圜之根次曰方圆幕积次曰防何补编次曰少广拾遗次曰堑堵测量皆以推阐算法或衍九章之未备或着今法之形或论中西形体之变化或释弧矢勾股八线之比例盖厯算之术至是而大备矣我 国家修明律数探赜索隠集千古之大成文鼎以草野书生乃能覃思切究洞悉源流其所论著皆足以通中西之防而折今古之中自郭守敬以来罕见其比其受 圣天子特逹之知固非偶然矣乾隆四十六年十月 恭校上 总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅 总 校 官 【臣】 陆 费 墀 壬午十月扈 驾南巡驻 跸德州有 防取所刻书集回奏匆遽未曽携带且多系经书制举 时文应塾校之需不足尘 览有宣城处士梅文鼎厯学疑问三卷【臣】所订刻谨呈 求 圣诲奉 防朕留心厯算多年此事朕能决其是非将书留览再 发二日后承 召面见 上云昨所呈书甚细心且议论亦公平此人用力深矣 朕带回宫中仔细看阅【臣】因求 皇上亲加御笔批駮改定庶草野之士有所取裁【臣】亦 得以预闻一二不胜幸甚 上肯之越明年春 驾复南巡遂于 行在发回原书 面谕朕已细细看过中间圏涂抹及签贴批语皆上手笔也臣复请此书疵缪所在 上云无疵缪但算法未备盖梅书原未完成 圣谕遂及之窃惟自古怀抱道业之士承诏有所述作者无论已若乃私家蔵录率多尘埋瓿覆至厯象天官之奥尤世儒所谓专门絶学者盖自好事耽奇之徒往往不能竟篇而罢曷能上烦 乙夜之观句谭字议相酬酢如师弟子梅子之遇可谓 千载一时方今 宸翰流行天下独未有裁自 圣手之书蓄于人间者岂特若洛下之是非坚定而子云遗编所谓遭遇时君度越诸子者亦无待乎桓谭之屡叹矣既以书归之梅子而为叙其时月因起俾梅宝奉焉甲申五月壬戌【臣】李光地恭记 [book_title]序 厯学疑问梅子定九之所着也先生于是学覃思博考四十年余凡所撰述满家自专门者不能殚览也余谓先生宜撮其指要束文伸义章缝之士得措心焉夫列代史志掀及律厯则几而不视况一家之书哉先生肯余言以受馆之暇为之论百十篇而托之疑者或曰子之强梅子以成书也于学者信乎当务欤曰畴人星官之所专司不急可也夫梅子之作辨于理也理可不知乎乾坤父母也继志述事者不离乎动静居息色笑之间故书始厯象诗咏时物礼分方设官春秋以时纪事易观于隂阳而立卦合乎嵗闰以生蓍其所谓秩叙命讨好恶美刺治教兵刑朝防搂伐建侯迁国之大涉川畜牝之细根而本之则始于太乙而殽于隂阳日星以为纪月以为量四时以为柄鬼神以为徒故曰思知人不可以不知天仰则观于天文穷理之事也此则儒者所宜尽心也圣之多才艺而精创作必称周公自大司徒土圭之法周髀盖天之制后世少有知者汉唐而下最著者数家率推一时一处以为定论其有四出测逾数千里则已度越古今而未能包八极以立説海外之士乘之真谓吾书之所未有微言既逺冺冺棼棼可胜诘哉梅子闵焉稽近不遗矣而源之务索其言之成则援 熙朝之厯以合于轩姬虞夏洙泗闽洛冺然也此固我皇上膺厯在躬妙极道数故草野之下亦笃生异士见知而与闻之而梅子用心之勤不惮探赜表微以归于至当一书之中述圣尊王兼而有焉昔刘歆三统文具汉志子云太平子以为汉家得嵗二百年之书也彼刘扬乌知天皆据洛下一家法而傅防以经义云尔今先生之论罗罔千载明 皇厯之得天即象见理综数归道异日兰台编次必有取焉七政三统殆不足儗而书体简实平易不为枝离佶屈吾知其説亦大行于经生家非如太之覆醤瓿者 而终不显矣先生之归也谓余叙之余不足以知厯姑叙其大意以质知先生者先生续且为之图表数术以继斯卷余犹得竟学而观厥成焉淸溪李光地书 [book_title]卷一 钦定四库全书 厯算全书卷一 宣城梅文鼎撰 厯学疑问一 论厯学古疏今密 问三代典制厄于秦火故儒者之论谓古厯宜有一定不变之法而不可复考后之人因屡变其法以求之葢至于今日之宻合而庶几克复古圣人之旧非古疏而今密也曰圣人言治厯明时盖取于革故治厯者当顺天以求合不当为合以验天若预为一定之法而不随时修改以求无弊是为合以验天矣又何以取于革乎且吾尝徴之天道矣日有朝有禺有中有昃有夜有晨此厯一日而可知者也月有朔有生明有有望有生魄有下有晦此厯一月而可知者也时有春夏秋冬昼夜有永短中星有推移此歴一嵗而可知者也乃若荧惑之周天则厯二年嵗星则十二年土星则二十九年【皆约整数】夫至于十二年二十九年而一周已不若前数者之易见矣又其毎周之间必有过不及之余分所差甚防非厯多周岂能灼见乃若嵗差之行六七十年始差一度厯二万五千余年而始得一周虽有期颐上夀所见之差不过一二度亦安从辨之迨其厯年既乆差数愈多然后共见而差法立焉此非前人之智不若后人也前人不能预见后来之差数而后人则能尽考前代之度分理愈乆而愈明法愈修而愈密势则然耳问者曰若是则圣人之智有所穷欤曰使圣人为一定之法则穷矣惟圣人深知天载之无穷而不为一定之法必使随时修改以求合天是则合天下万世之聪明以为其耳目圣人之所以不穷也然则厯至今日而愈密者皆圣人之法之所该矣 论中西二法之同 问者曰天道以乆而明厯法以修而密今新厯入而尽变其法以从之则前此之积举不足用乎曰今之用新厯也乃兼用其长以补旧法之未备非尽废古法而従新术也夫西厯之同乎中法者不止一端其言日五星之高加减也即中法之盈缩厯也在太隂则迟疾厯也其言五星之嵗轮也即中法之段目也【迟留逆伏】其言恒星东行也即中法之嵗差也其言节气之以日躔过宫也即中法之定气也其言各省直节气不同也即中法之里差也但中法言盈缩迟疾而西説以最高最卑明其故中法言段目而西説以嵗轮明其故中法言嵗差而西説以恒星东行明其故是则中厯所著者当然之运而西厯所推者其所以然之源此其可取者也若夫定气里差中厯原有其法但不以注厯耳非古无而今始有也西厯始有者则五星之纬度是也中厯言纬度惟太阳太隂有之【太阳出入于赤道其纬二十四度太隂出入于黄道其纬六度】而五星则未有及之者今西厯之五星有交防有纬行亦如太阳太隂之详明是则中厯缺陷之大端得西法以补其未备矣夫于中法之同者既有以明其所以然之故而于中法之未备者又有以补其缺于是吾之积者得彼説而益信而彼説之若难信者亦因吾之积而有以知其不诬虽圣人复起亦在所兼收而亟取矣 论中西之异 问今纯用西法矣若子之言但兼用其长耳岂西法亦有大异于中而不可全用抑吾之用之者犹有未尽欤曰西法亦有必不可用者则正朔是也中法以夏正为嵗首此万世通行而无弊者也西之正朔则以太阳防恒星为嵗其正月一日定于太阳躔斗四度之日而恒星既东行以生嵗差则其正月一日亦屡变无定故在今时之正月一日定于冬至后十一日溯而上之可七百年则其正月一日在冬至日矣又溯而上之七百年又在冬至前十日矣由今日顺推至后七百年则又在冬至后二十日矣如是不定安可以通行乎此徐文定公造厯书之时弃之不用而亦略不言及也然则自正朔外其余尽同乎曰正朔其大者也余不同者尚多试略举之中法歩月离始于朔而西法始于望一也中法论日始子半而西法始午中二也中法立闰月而西法不立闰月惟立闰日三也黄道十二象与二十八舍不同四也余星四十八象与中法星名无一同者五也中法纪日以甲子六十日而周西法纪日以七曜凡七日而周六也中法纪嵗以甲子六十年而周西法纪年以以总积六千余年为数七也中法节气起冬至而西法起春分八也以上数端皆今厯所未用徐文定公所谓镕西算以入大綂之型模葢谓此也【就中推闰日用之于恒表积数而不废闰月犹弗用也其总积之年厯指中偶一举之而不以纪嵗】 论今法于西厯有去取之故 问者曰皆西法也而有所弃取何也曰凡所以必用西法者以其测算之精而己非好其异也故凡高卑加减黄道经纬之属皆其测算之根而不得不用者也若夫测算之而既合矣则纪日于午何若纪于子之善也纪月于朢何若纪于朔之善也四十八象十二象之星名与三垣二十八宿虽离合不同而其星之大小逺近在天无异也又安用此纷纷乎此则无闗于测算之用者也乃若正朔之颁为国家礼乐刑政之所出圣人之所定万世之所遵行此则其必不可用而不用者也又何惑焉 论囘囘厯与西洋同异 问囘囘亦西域也何以不用其厯而用西洋之厯曰囘囘厯与欧罗巴【即西洋厯】同源异派而踈宻殊故囘囘厯亦有七政之高以为加减之根又皆以小轮心为平行其命度也亦起春分其命日也亦起午正其算太隂亦有第一加减第二加减算交食三差亦有九十度限亦有影径分之大小亦以三百六十整度为周天亦以九十六刻为日亦以六十分为度六十秒为分而逓析之以至于防亦有闰日而无闰月亦有五星纬度及交道亦以七矅纪日而不用干支其立象也亦以东方地平为命宫其黄道上星亦有白羊金牛等十二象而无二十八宿是种种者无一不与西洋同故曰同源也然七政有加减之小轮而无均轮太隂有倍离之经差加减而无交均之纬差故愚尝谓西厯之于囘囘犹授时之于纪元统天其踈密固较然也然在洪武间未尝不密其西域大师马哈麻马沙亦黒颇能精于其术但深自秘惜又不着立表之根后之学者失其本法之用反借大统春分前定气之日以为立算之基何怪其乆而不效耶然其法之善者种种与西法同今用西法即用囘囘矣岂有所取舎于其间哉【按囘囘古称西域自明郑和奉使入洋以其非一国槩称之曰西洋厥后欧罗巴入中国自称大西洋谓又在囘囘西也今厯书题曰西洋新法盖囘囘厯即西洋旧法耳论中举新法皆曰欧罗巴不敢混称西洋所以别之也】 论回回厯厯元用截法与授时同 问论者谓回回厯元在千余年之前故乆而不可用其説然欤曰回回厯书以隋开皇己未为元谓之阿刺必年然以法求之实用洪武甲子为元而托之于开皇己未耳何以知之盖回回厯有太阳年太隂年自洪武甲子逆溯开皇己未距算七百八十六此太阳年也而回囘厯立成所用者太隂年也回回厯太隂年至第一月一日与春分同日之年则加一嵗约为三十二三年而积闰月十二所谓应加次数也然则洪武甲子以前距算七百八十六年当有应加闰月之年二十四次而今不然即用距算查表至八百一十七算之时始加头一次然则此二十四个闰年之月日将何所归乎故知其即以洪武甲子为元也惟其然也故其总年立成皆截从距开皇六百年起其前皆缺盖皆不用之数也然则何以不竟用七百八十算为立成起处而用六百年曰所以涂人之耳目也又最高行分自六百六十算而变以前则渐减以后则渐増其减也自十度以至初度其増也又自初度而渐加此法中厯所无故存此以见意也【初度者盖指巨蠏初防惟六百六十算之年最高与此防合以嵗计之当在洪武甲子年前一百二十六算其前渐减者盖是未到巨蠏之度故渐减也】由是言之其算宫分虽以开皇己未为元而其查立成之根则在己未元后二十四年【即立成所谓一年】既退下二十四年故此二十四次应加之数可以不加自此以后则皆以春分所入月日挨求亦可不必细论惟至闰满十二个月之年乃加一次此其巧防之法也然则其不用积年而截取现在为元者固与授时同法矣 论天地人三元非回回本法 问治回回厯者谓其有天地人三元之法天元谓之大元地元谓之中元人元谓之小元而以己未为元其简法耳以子言观之其説非欤曰天地人三元分算乃吴郡人陈壤所立之率非回回法也【陈星川名壤袁了凡师也嘉靖间曽上疏改厯而格不行】其説谓天地人三元各二千四百一十九万二千年今嘉靖甲子在人元己厯四百五十六万六千八百四十算所以为此迂逺之数者欲以求太乙数之周纪也【按太史王肯堂笔廛云太乙多不能算厯故以厯法求太乙多不合惟陈星川之太乙与厯法合】然其立法皆截去万以上数不用故各种立成皆止于千其为虚立无用之数可知矣夫三式之有太乙不过占家一种之书初无闗于厯算乂其立法以六十年为纪七十二年为元五元则三百六十年谓之周纪纯以干支为主而西域之法不用干支安得有三元之法乎今天地人三元之数现在厯法新书初未尝言其出于回回也盖明之知回回厯者莫精于唐荆川顺之陈星川壤两公而取唐之説以成书者为周云渊述学述陈之学以为书者为袁了凡黄然云渊厯宗通议中所述荆川精语外别无发眀【有厯宗中经余未见】而荆川亦不知最高为何物【唐荆川曰要求盈缩何故减那最高行度只为嵗差积乆年年欠下盈缩分数以此补之云云是未明厥故也】若云渊则直以毎日日中之晷景当高尤为臆説矣了凡新书通回回之立成于大统可谓苦心然竟削去最高之算又直用大统之嵗余而弃授时之消长将逆推数百年亦已不效况数千万年之乆乎人惟见了凡之书多用回回法遂误以为西域土盘本法耳又若薛仪甫凤祚亦近日西学名家也其言囘囘厯乃谓以己未前五年甲寅为元此皆求其説不得而强为之解也总之回回厯以太隂年列立成而又以太阳年查距算巧藏其根故虽其专门之裔且不能知无论他人矣【查开皇甲寅乃回教中所彼国圣人辞世之年故用以纪嵗非厯元也薛仪甫盖以此而误】 论回回厯正朔之异 问回回厯有太阳年又有太隂年其国之纪年以何为定乎曰回回国太隂年谓之动的月其法三十年闰十一日而无闰月惟以十二个月为一年【无闰则三百五十四日有闰则三百五十五日】故遇中国有闰月之年则其正月移早一月【如首年春分在第一月遇闰则春分在第二月而移其春分之前月为第一月】故曰动的月其太阳年则谓之不动的月其法以一百二十八年而闰三十一日皆以太阳行三十度为一月即中厯之定气其白羊初即为第一月一日嵗嵗为常故曰不动的月也然其纪嵗则以太隂年而不用太阳年此其异于中厯而并异于欧罗巴之一大端也然又有异者其毎嵗斋月又不在第一月而在第九月满此斋月至第十月一日则相贺如正旦焉不特此也其所谓月一日者又不在朔不在朢而在哉生明之后一日其附近各国皆然瀛涯胜览诸书可考而知也 马欢瀛涯胜览曰占城国无闰月但十二月为一年昼夜分为十更用鼓打记又曰阿丹国无闰月气温和常如八九月惟以十二个月为一年月之大小若头夜见新月明日即月一也又曰榜葛刺国亦无闰月以十二个月为一年按马欢自称防稽山樵曽従郑和下西洋故书其所见如此盖其国俱近天方故风俗并同其言月一者即月之第一日在朔后故不言朔厥后张升改其文曰以月出定月之大小夜见月明日又为一月也文句亦通然非月一字义也又按一统志天方国古筠冲之地旧名天堂又名西域有回回厯与中国前后差三日葢以见新月之明日为月之一日故差三日○又按素问云一昼一夜五分之隋志云昼有朝有禺有中有晡有夕夜有甲乙丙丁戊则昼夜十更之法中法旧有之○又熊防石岛夷志曰舶舟视旁罗之针罗罗处甚幽密惟开小扄直舵门灯长燃不分昼夜夜五更昼五更合昼夜十二辰为十更其针路悉有谱按此以十更记程而百刻匀分不论冬夏长短与记里鼓之意略同若素问隋志所云则以日出入为断而昼夜有长短更法因之而变两法防别占城用鼔打记不知若何要不出此二法 论夏时为尧舜之道 问古有三正而三王迭用之则正朔原无定也安在用太隂年用恒星年之为非是乎曰古圣人之作厯也以敬授民时而已天之气始于春盛于夏敛于秋伏藏于冬而万物之生长收藏因之民事之耕耘收获因之故圣人作厯以授民时而一切政务皆顺时以出令凡郊社禘尝之礼五祀之祭搜苗狝狩之节行庆施惠决狱治兵之典朝聘之期饮射读法劝耕省敛土功之事洪纎具举皆于是乎在故天子以颁诸侯诸侯受而藏诸祖庙以毎月告朔而行之厯之重葢如是也而顾使其游移无定何以示人遵守乎如回回厯则毎二三年而其月不同是春可为夏夏可为冬也如欧罗巴则毎七十年而差一日积之至乆四时亦可互为矣是故惟行夏之时斯为尧舜之道大中至正而不可易也然则又何以有三正曰三正虽殊而以春为民事之始则一也故建丑者二阳之月也建子者一阳之月也先王之于民事也必先时而戒事犹之日出而作而又曰鸡鸣而起中夜以兴云尔岂若毎嵗迁徙如是其纷纷者哉虽其各国之风俗相沿而不自觉然以数者相较而孰为正大孰为烦碎则必有辨矣 论语行夏之时古注云据见万物之生以为四时之始取其易知 论西厯亦古疏今宻 问中厯古疏今密实由积固己西厯则谓自古及今一无改作意者其有神授欤曰殆非也西法亦由积而渐至精密耳隋以前西厯未入中国其见于史者在唐为九执厯在元为万年厯在明为回回厯在 本朝为西洋厯新法然九执厯课既疏逺 唐大衍厯既成而一行卒瞿昙怨不得与改厯事讼于朝谓大衍写九执厯未尽其法诏厯官比验则九执厯课最防 万年厯用亦不乆 元太祖庚辰西征西域厯人奏五月朢月当蚀耶律楚材曰否卒不蚀明年十月楚材言月当蚀西域人曰不蚀至期果蚀八分 世祖至元四年西域札玛鲁丹撰进万年厯世祖稍颁行之至十八年改用授时厯 回回厯明用之三百年后亦渐防 明洪武初设回回司天台于雨花台寻罢回回司天监设回回科钦天监毎年西域官生依其本法奏进日月交蚀及五星凌犯等厯 欧罗巴最后出而称最精岂非后胜于前之明验欤诸如厯书所述多禄某之法至歌白泥而有所改订歌白泥之法至地谷而大有变更至于地谷法略备矣而逺镜之制又出其后则其为累测益精大略亦如中法安有所谓神授之法而一成不易者哉是故天有层数西法也而其説或以为九重或以为十二重今则以金水太阳共为一重矣又且以火星冲日之时比日更近而在太阳天之下则九重相裹如葱头之説不复可用矣太阳大于地西説也而其初説日径大于地径一百六十五倍奇今只筭为五倍奇两数相悬不啻霄壤矣太阳最高卑嵗嵗东移西法也然先定二至后九度后改定为六度今复移进半度为七度奇矣又何一非后来居上而谓有神授不由积验乎 浑盖通宪定奥日在巨蠏九度即最高也其时为万厯丁未在戊辰厯元前二十年是利西泰所定厥后厯书定戊辰年最高冲度在冬至后五度五十九分五十九秒以较万厯丁未所定之奥日凡改退三度有奇是徐文定公及汤罗诸西士所定今康熙永年厯法重定康熙戊午高冲在冬至后七度○四分○四秒以较厯书二百恒年表原定戊午高冲六度三十七分二十九秒凡移进二十六分三十五秒其书成于厯书戊辰元后五十年是治理厯法南懐仁所定 论地圎可信 问西人言水地合一圆球而四面居人其地度经纬正对者两处之人以足版相抵而立其説可信欤曰以浑天之理徴之则地之正圆无疑也是故南行二百五十里则南星多见一度而北极低一度北行二百五十里则北极高一度而南星少见一度若地非正圎何以能然至于水之为物其性就下四皆天则地居中央为最下水以海为壑而海以地为根水之附地又何疑焉所疑者地既浑圎则人居地上不能平立也然吾以近事徴之江南北极高三十二度浙江高三十度相去二度则其所戴之天顶即差二度【江南天顶去北极五十八度浙江天顶去北极六十度】各以所居之方为正则遥防异地皆成斜立又况京师极高四十度琼海极高二十度【京师以去北极五十度之星为天顶琼海以去北极七十度之星为天顶】若自京师而观琼海其人立处皆当倾跌【琼海望京师亦复相同】而今不然岂非首戴皆天足履皆地初无欹侧不忧环立欤然则南行而过赤道之表北逰而至戴极之下亦若是已矣是故大戴礼则有曽子之説 大戴礼单居离问于曽子曰天圆而地方诚有之乎曽子曰如诚天圆而地方则是四角之不揜也参尝闻之夫子曰天道曰圆地道曰方 内经则有岐伯之説 内经黄帝曰地之为下否乎岐伯曰地为人之下太虚之中也曰凭乎曰大气举之也素问又曰立于子而面午立于午而面子皆曰北面立于午而负子立于子而负午皆曰南靣释之者曰常以天中为北故对之者皆南也 宋则有邵子之説 邵子观物篇曰天何依曰依地地何附曰附天曰天地何所依附曰自相依附 程子之説 程明道语録曰天地之中理必相直则四边当有空阙处地之下岂无天今所谓地者特于天中一物尔又曰极须为天下之中天地之中理必相直今人所定天体只是且以眼定视所极处不见遂以为尽然向曽有于海上见南极下有大星数十则今所见天体葢未定以土圭之法騐之日月升降不过三万里中然而中国只到鄯善莎车已是一万五千里就彼观日尚只是三万里中也 地圆之説固不自欧逻西域始也 元西域札玛鲁丹造西域仪像有所谓库哩叶阿喇斯汉言地里志也其制以木为圆毬七分为水其色緑三分为土地其色白画江河湖海贯串于其中画作小方井以计幅员之广袤道里之逺近此即西説之祖 论葢天周髀 问有圆地之説则里差益明而浑天之理益着矣古乃有葢天之説殆不知而作者欤曰自扬子云诸人主浑天排葢天而葢説遂诎由今以观固可并存且其説实相成而不相悖也何也浑天虽立两极以言天体之圆而不言地圎直谓其正平焉耳若葢天之説具于周髀其説以天象盖笠地法覆槃极下地高滂沲四隤而下则地非正平而有圆象明矣故其言昼夜也曰日行极北北方日中南方夜半日行极东东方日中西方夜半日行极南南方日中北方夜半日行极西西方日中东方夜半凡此四方者昼夜易处加四时相及此即西厯地有经度以论时刻早晚之法也其言七衡也曰北极之下不生万物北极左右夏有不释之冰中衡左右冬有不死之草五谷一嵗再熟凡北极之左右物有朝生暮获【赵君卿注曰北极之下从春分至秋分为昼从秋分至春分为夜】即西厯以地纬度分寒暖五带昼夜长短各处不同之法也使非天地同为浑圎何以能成此算周髀本文谓周公受于商高虽其详莫攷而其説固有所本矣然则何以不言南极曰古人著书皆详于其可见而略于所不见即如中高四下之説既以北极为中矣而又曰天如倚盖是亦即中国之所见拟诸形容耳安得以辞害意哉故写天地以圆器则葢之度不违于浑图星象于平楮则浑之形可存于葢唐一行善言浑天者也而有作葢天圗法元郭太史有异方浑盖圗今西厯有平浑仪皆深得其意者也故浑盖之用至今日而合浑盖之説亦至今日而合浑盖之説亦至今日而益明元札马鲁丁西域仪象有兀速都儿刺不定汉言昼夜时刻之器其制以铜如圆镜而可挂面刻十二辰位昼夜时刻上加铜条缀其中可以圆转铜条两端各屈其首为二窍以对望昼则视日影夜则窥星辰以定时刻以则休咎背嵌镜片二面刻其圗凡七以辨东西南北日影长短之不同星辰向背之有异故各异其图以尽天地之变焉按此即今浑盖通宪之制也以平诠浑此为著 论周髀仪器 问若是则浑盖通宪即盖天之遗制欤抑仅平度均布如唐一行之所云耶曰皆不可考矣周髀但言笠以写天天青黒地黄赤天数之为笠也赤黒为表丹黄为里以象天地之位此盖写天之器也今虽不以意度之当是圆形如笠而图度数星象于内其势与仰观不殊以视平圗浑象转为亲切何也星圗强浑为平则距度之防密改观浑象图星于外则星形之左右易位若写天于笠则其圆势屈而向内星之经纬距皆成弧度与测筭脗合胜平圗矣又其星形必在内面则星之上下左右各正其位胜浑象矣 论厯元 问造厯者必先立元元正然后定日法法立然后度周天古厯数十家皆同此术至授时独不用积年日法何欤曰造厯者必有起算之端是谓厯元然厯元之法有二其一逺溯初古为七曜齐元之元自汉太初至金重修大明厯各所用之积年是也其一为截算之元自元授时不用积年日法直以至元辛巳为元而今西法亦以崇祯戊辰为元是也二者不同然以是为起算之端一而已矣则二者无优劣乎曰授时优夫所谓七曜齐元者谓上古之时嵗月日时皆防甲子而又日月如合璧五星如连珠故取以为造厯之根数也使其果然虽万世遵用可矣乃今卄一史中所载诸家厯元无一同者是其积年之乆近皆非有所受之于前直以巧算取之而已然谓其一无所据而出于胸臆则又非也当其立法之初亦皆有所验于近事然后本其时之所实测以旁证于书之所约其合者既有数端遂援之以立术于是溯而上之至于数千万年之逺庶几各率可以齐同积年之法所由立也然既欲其上合厯元又欲其不违近测畸零分秒之数必不能齐势不能不稍为整顿以求巧合其始也据近测以求积年其既也且将因积年而改近测矣又安得以为定法乎授时厯知其然故一以实测为凭而不用积年虚率上考下求即以至元十八年辛巳嵗前天正冬至为元其见卓矣按唐建中时术者曺士蔿始变古法以显庆五年为上元雨水为嵗首号符天厯行于民间谓之小厯又五代石晋高祖时司天监马重绩造调元厯以唐天寳十四载乙未为上元用正月水为气首此二者亦皆截筭之法授时厯葢采用之耳然曺马二厯未尝密测逺徴不过因时厯之率截取近用若郭太史则制器极精四海测验者二十七所又上考春秋以来至于近代然后立术非舍难而就易也 又按孟子千嵗日至赵注只云日至可知其日孙奭疏则直云千嵗以后之日至可坐而定初不言立元 论西法积年 问厯元之难定以嵗月日时皆防甲子也若西厯者初不知有甲子何难溯古上元而亦截自戊辰欤曰西人言开辟至今止六千余年是即其所用积年也然厯书不用为元者何也既无干支则不能合于中法一也又其法起春分与中法起冬至不同以求上古积年毕世不能相合二也且西书所不一其积年之説先有参差三也故截自戊辰为元亦镕西算入中法之一事葢立法之善虽巧算不能违矣 天地仪书自开辟至崇祯庚辰凡五千六百三十余年圣经直解开辟至崇祯庚辰凡六千八百三十六年 通雅按诸太西云自开辟至崇祯甲申六千八百四十年依所制稽古定仪推之止五千七百三十四年月离厯指曰崇祯戊辰为总期之六千三百四十一年 天文实用云开辟初时适当春分又云中西皆以角为宿首因开辟首日昬时角为中星也今以恒星本行逆推约角宿退九十度必为中星计年则七千矣与圣经纪年合 开辟至洪水天地仪书云一千六百五十余年圣经直解则云二千二百四十二年相差五百九十二年洪水至汉哀帝元夀二年庚申天主降生天地仪书云二千三百四十余年圣经直解则云二千九百五十四年相差六百一十四年遗诠又云二千九百四十六年比圣经直解又少八年 论日法 问上古积年荒忽无凭去之诚是也至于日法则现在入用之数也而古厯皆有日法授时何以独无曰日法与厯元相因而立者也不用积年自可不用日法矣盖古厯气朔皆定大小余大余者日也小余者时刻也凡七曜之行度不能正当时刻之初而或在其中半难分之处非以时刻剖析为若干分秒则不能命筭此日法所由立也自日法而析之则有辰法刻法分法秒法自日法而积之则有气防法朔实法嵗实法旬周法与日日法同用者则有度法宿次法周天法又有章法蔀法纪法元法一切诸法莫不以日法为之纲古厯首定日法而皆有畸零葢以此也惟日法有畸零故诸率从之而各有畸零之数矣夫古厯岂故为此繁难以自困哉欲以上合于所立之厯元而为七曜之通率有不得不然者也【如古法以九百四十分为日法其四分之一则为二百三十五所以然者以十九年一章有二百三十五月也又古法月行十九分度之七是以十九分为度法亦以十九年一章有七闰也他皆类此】今授时既不用积年即章蔀纪元悉置不用而一以天验为徴故可不用畸零之日法而竟以万分为日日有百刻刻有百分故一万也自此再析则分有百秒秒有百微皆以十百为等而递进退焉数简而明易于布算法之极善者也是故授时非无日法也但不用畸零之日法耳用畸零之日法乘除既繁而其势又有所阻故分以下复用秒母焉用万分之日可以析之屡析至于无穷【日躔之用有秒则日为百万月离之用有防则日为亿万】而乘除之间转觉其易是小余之细未有过于授时者也而又便于用岂非法之无可以万世遵行者哉 按宋蔡季通欲以十二万九千六百为日法而当时厯家不以为然畏其细也然以较授时犹未及其秒数而不便于用者有畸零也有畸零而又于七曜之行率无闗何怪厯家之不用乎若回回泰西则皆以六十递析虽未尝别立日法而秒防以下必用通分颇多纡折若非逐项立表则其繁难不啻数倍授时矣薛仪甫着天学防通以六十分改为百分诚有见也 厯算全书卷一 [book_title]卷二 钦定四库全书 厯算全书卷二 宣城梅文鼎撰 厯学疑问二 论嵗实【闰余】 问岁实有一定之数而何以有闰余曰惟岁实有一定之数所以生闰余也凡纪岁之防有二自今年冬至至来年冬至凡三百六十五日二十四刻二十五分而太阳行天一周是为一嵗二十四莭气之日【据授时大统之数或自今年立春至来年立春亦同】 周礼太史注中数曰岁朔数曰年自今年冬至至明年冬至岁也自今年正月朔至明年正月朔年也古有此语要之岁与年固无大别而中数朔数之不齐则气盈朔虚之所由生 自正月元旦至腊月除夕凡三百五十四日三十六刻七十一分一十六秒而太阴防太阳于十二次一周是为一岁十二月之日【亦据授时平朔言之】两数相较则莭气之日多于十二月者一十日八十七刻五十三分八十四秒是为一岁之通闰积至三年共多三十二日六十二刻六十一分五十二秒而成一闰月仍多三日零九刻五十五分五十九秒积至五年有半共多五十九日八十一刻四十六分一十二秒而成两闰月仍多七十五刻三十四分二十六秒古云三岁一闰五岁再闰者此也然则何以不竟用莭气纪歳则闰月可免矣曰晦朔望易见者也莭气过宫难见者也敬授人时则莫如用其易见之事而但为之闰月以通之则四时可以不忒尧命羲和以闰月定四时成歳此尧舜之道万世不可易也若囘囘厯有太阴年为动的月有太阳年为不动的月夫既谓之月安得不用晦朔望而反用莭气乎故囘囘厯虽有太阳年之算而天方诸国不以纪歳也沈存中欲以莭气纪歳而天经或问亦有是言此未明古圣人之意者矣 论歳余消长 问歳实既有一定之数授时何以有消长之法曰此非授时新法而宋綂天之法然亦非綂天亿创之法而合古今累代之法而为之者也盖古厯周天三百六十五度四分度之一一歳之日亦如之故四年而增一日【今西厯永年表亦同】其后渐觉后天皆以为斗分太强因稍损之【古厯起斗终斗故四分之一皆寄斗度谓之斗分】自汉而晋而唐而宋毎次改厯必有所减以合当时实测之数故用前代之厯以顺推后代必至后天以斗分强也【斗分即嵗余】若用后代之厯据近测以逆溯往代亦必后天以斗分弱也【前推后而歳余强则所推者过于后之实测矣后推前而嵗余弱则所推者不及于前之实测矣故皆后天】綂天厯见其然故为之法以通之于歳实平行之中加一古多今少之率则于前代诸厯不相戾而又不违于今之实测此其用法之巧也然綂天厯蔵其数于法之中而未尝明言消长授时则明言之今遂以为授时之法耳郭太史自述创法五端初未及此也然则大綂厯何以不用消长曰此则元綂之失也当时李德芳固巳上疏争之矣然在洪武时去授时立法不过百年所减不过一分积之不过一刻故虽不用消长无甚差殊也崇祯厯书谓元綂得之测验窃不谓然何也元綂与德芳辨但自言未变旧法不言测騐有差又其所着通轨虽便初学殊昧根宗间有更张辄违经防【如月食时差既内分等俱妄改背理】岂能于冬至加时后先一刻之间而测得真数乎然则消长必不可废乎曰上古则不可知矣若春秋之日南至固可考据而唐宋诸家之实测有据者史册亦具存也今以消长之法求之其数皆合若以大綂法求之则皆后天而于春秋且差三日矣安可废乎然则綂天授时之法同乎曰亦不同也綂天厯逐年逓差而授时消长之分以百年为限则授时之法又不如綂天矣夫必百年而消长一分未尝不是乃以乗距算其数骤变殊觉不伦郑世子黄钟厯法所以有所酌改也【假如康熙辛酉年距元四百算该消四分而其先一年庚申距算三百九十九只消三分是庚申年嵗余二十四刻二十二分而辛酉年歳余二十四刻二十一分也以此所消之一分乗距算得四百分则辛酉嵗前冬至忽早四刻而次年又只平运以实数计之庚申年反只三百六十五日二十刻二十二分辛酉年则又是三百六十五日二十四刻二十一分其法舛矣】 论嵗实消长之所以然 问嵗实消长之法既通于古亦宜合于今乃今实测之家又以为消极而长其説安在岂亦有所以然之故欤曰授时虽承统天之法而用消长但以推之旧厯而合耳初未尝深言其故也惟厯书则为之説曰嵗实渐消者由日轮之毂渐近地心也余尝窃疑其説今具论之夫西法以日天与地不同心疏盈缩加减之理其所谓加减皆加减于周天三百六十度之中非有所増损于其外也如最高则视行见小而有所减最卑则视行见大而有所加加度则减时矣减度则加时矣然皆以最卑之所减补最高之所加及其加减既周则其总数适合平行略无余欠也若果日轮之毂渐近地心不过其加减之数渐平耳加之数渐平则减之数亦渐平其为迟速相补而归于平行一也岂有日轮心逺地心之时则加之数多而减之数少日轮心近地心时则减之数少而加之数多乎必不然矣又考日躔永表彼固原未有消长之説日躔厯指言平嵗用授时消分定嵗则用最高差及查恒年表之用则又只用平率是其説未有所决也又厯书言日轮渐近地心数千年后将合为一若前之渐消由于两心之渐近则今之消极而长两心亦将由近极而逺数千年后又安能合为一乎彼盖见授时消分有据而姑为此説非能极论夫消长之故者也然则将何以求其故曰授时以前之渐消既徴之经史而信矣而今现行厯之嵗实又稍大于授时其为复长亦似有据窃考西厯高卑今定于二至后七度依永年厯毎年行一分有奇则授时立法之时最高卑正与二至同度而前此则在至前过此则在至后岂非高冲渐近冬至而嵗余渐消及其过冬至而东又复渐长乎余观七政厯于康熙庚申年移改最高半度弱而其年歳实骤増一刻半强此亦一徴也存此以竢后之知厯者【巳未年最高在夏至后六度三十九分庚申年最高在夏至后七度七分除本行外计新移二十七分己未年冬至庚戌日亥正一刻四分庚申年冬至丙辰日寅正二刻二分实计三百六十五日二十四刻十三分前后各年俱三百六十五日二十三刻四分或五分以较庚申年嵗实骤増一刻九分】王寅旭曰嵗实消长其説不一谓由日轮之毂渐近地心其数寖消者非也日轮渐近则两心差及所生均数亦异以论定嵗诚有损益若平嵗嵗实尚未及均数则消长之源与两心差何与乎识者欲以黄赤极相距逺近求嵗差朓朒与星嵗相较为节嵗消长终始循环之法夫距度既殊则分至诸限亦宜随易用求差数其理始全然必有平嵗之嵗差而后有朓朒之嵗差有一定之嵗实而后有消长之嵗实以有定者纪其常以无定者通其变始可以永乆而无弊 按寅旭此论是欲据黄赤之渐近以为嵗实渐消之根盖见西测黄赤之纬古大今小今又觉稍赢故断以为消极复长之故然黄赤逺近其差在纬嵗实消长其差在经似非一根又西测距纬复赢者彼固自疑其前测最小数之末真则亦难为确据愚则以中厯嵗实起冬至而消极之时高冲与冬至同度高冲离至而嵗实亦増以经度求经差似较亲切愚与寅旭生同时而不相闻及其卒也乃稍稍见其书今安得起斯人于九原而相与极论以质所疑乎 论恒星东移有据 问古以恒星即一日一周之天而七曜行其上今则以恒星与七曜同法而别立宗动是一日一周者与恒星又分两重求之古厯亦可通欤曰天一日一周自东而西七曜在天迟速不同皆自西而东此中西所同也然西法谓恒星东行比于七曜今考其度盖即古厯嵗差之法耳嵗差法昉于虞喜而畅于何承天祖冲之刘焯唐一行厯代因之讲求加密然皆谓恒星不动而黄道西移故曰天渐差而东嵗渐差而西所谓天即恒星所谓嵗即黄道分至也西法则以黄道终古不动而恒星东行假如至元十八年冬至在箕十度至康熙辛未厯四百十一年而冬至在箕三度半在古法谓是冬至之度自箕十度西移六度半而箕宿如故也在西法则是箕星十度东行过冬至限六度半而冬至如故也其差数本同所以致差者则不同耳然则何以知其必为星行乎曰西法以经纬度恒星则普天星度俱有嵗差不止冬至一处此盖得之实测非臆断也然则普天之星度差古之测星者何以皆不知耶曰亦尝求之于古矣盖有三事可以相证其一唐一行以铜浑仪二十八舍其去极之度皆与旧经异今以歳差考之一行铜仪成于开元七年其时冬至在斗十度而自牵牛至东井十四宿去极之度皆小于旧经是在冬至以后厯春分而夏至之半周其星自南而北南纬増则北纬减故去北极之度渐差而少也自舆鬼至南斗十四宿去极之度皆大于旧经是在夏至以后厯秋分而冬至之半周其星自北而南南纬减则北纬増故去北极之度渐差而多也【星度详后】向使非恒星移动何以在冬至后者渐北在夏至后渐南乎【恒星循黄道行实只东移无所谓南北之行也而自赤纬观之则有南北之差盖横斜之势使然】其一古测极星即不动处齐梁间测得离不动处一度强【祖暅所测】至宋熈宁测得离三度强【沈存中测详梦溪笔谈】至元世祖至元中测得离三度有半【郭太史极仪径七度终夜见极星循行环内切边而行是也】向使恒星不动则极星何以离次乎其一二十八宿之距度古今六测不同【详元史】故郭太史疑其动移此盖星既循黄道东行而古测皆依赤道黄赤斜交勾异视所以度有伸缩正由距有横斜耳不则岂其前人所测皆不足慿哉故仅以冬至言差则中西之理本同而合普天之星以求经纬则恒星之东移有据何以言之近两至处恒星之差在经度故可言星东移者亦可言嵗西迁近二分处恒星之差竟在纬度故惟星实东移始得有差若只两至西移诸星经纬不应有变也如此则恒星之东移信矣恒星既东移不得不与七曜同法矣恒星东移既与七曜同法即不得不更有天挈之西行此宗动所由立也 唐一行所测去极度与旧不同者列后 旧经        唐测 牵牛【去极】百 六度  牵牛【去极】百 四度须女 百  度【有脱字】 须女 百 一度 虚  百 四度   虚  百 一度 危  九十七度【有误字】 危  九十七度 营室 八十五度   营室 八十三度 东壁 八十六度   东壁 八十四度 奎  七十六度   奎  七十三度 娄  八十度    娄  七十七度 胃昴 七十四度   胃昴 七十二度 毕  七十八度   毕 七十六度 觜觹 八十四度   觜觹 八十二度 参  九十四度   参  九十三度 东井 七十度    东井 六十八度 以上十四宿去极之度皆古测大而唐测小是所测去极之度少于古测为其星自南而北也又按唐开元冬至在斗十度则此十四宿为自冬至后厯春分而夏至之半周 旧经         唐测 舆鬼 六十八度    舆鬼 六十八度 栁  七十七度    栁  八十度半 七星 九十一度    七星 九十三度半张  九十七度   张  百度 翼  九十七度   翼  百 三度 轸  九十八度   轸  百度 角  九十一度【正当赤道】 角  九十三度半【在赤道南二度半】亢  八十九度   亢  九十一度半氐  九十四度   氐  九十八度 房  百 八度   房  百一十度半心  百 八度   心  百一十度 尾  百二十度   尾  百二十四度箕  百一十八度  箕  百二十度 南斗 百一十六度  南斗 百一十九度以上十四宿去极之度皆古测小而唐测大是所测去极之度多于古测为其星自北而南也以冬至斗十度言之则此十四宿为自夏至后厯秋分而冬至之半周 论七政高下 问言日月星辰系焉而今谓七政各有一天何据曰屈子天问圜则九重孰营度之则古有其语矣七政运行各一其法此其説不始西人也但古以天如棊局不动而七政错行如碁子之推移西人之説则谓日月五星各丽一天而有高下其天动故日月五星动非七政之自动也其所丽之天表里通彻故但见七政之动耳不然则将如彗孛之类旁行斜出安得有一定之运行而可以施吾筹防乎且既各丽一天则皆天也虽有高下而总一浑灏之体于中庸所谓击焉者初无抵牾也然则何以知其有高下曰此亦古所有但言之未详耳古今厯家皆言月在太阳之下故月体能蔽日光而日为之食是日高月下日逺月近之证也又歩日食者以交道表里而论其食分随地所见深浅各异故此方见食既者越数千里而仅亏其半古人立法谓之东西南北差是则日之下月之上相距甚逺之证也又月与五星皆能掩食恒星是恒星最在上而于地最逺也月又能掩食五星是月最在下而于地最近也五星又能互相掩是五星在恒星之下月之上而其所居又各有高下于地各有逺近也向使七政同在一规而无高下之距则相遇之时必相触击何以能相掩食而过乎是故居七政之上最近大圜最逺于地者为恒星恒星之下次为土星又次为木星次为火星次为太阳为金为水最近于地者为月以视差言之与人目逺者视差防近则视差大故恒星之视差最防以次渐増至月而差极大也以行度言之近大圜者为动天所掣故左旋速而右移之度迟渐近地心则与动天渐逺而左旋渐迟即右移之度反速故左旋之势恒星最速以次渐迟至月而为最迟也右移之度恒星最迟以次渐速至月而反最速也是二者宛转相求其数巧合高下之理可无复疑【梦溪笔谈以月盈亏明日月之形如丸可谓明悉而又以问者之疑其如丸则相遇而相碍故輙漫应之曰日月气也有形无质故相值而无碍此则未明视差之理为智者千虑之失】 论无星之天 问古以恒星不动七曜常移故有蚁行磨上之喻今恒星东移既与七曜同法则恒星亦是蚁而非磨故虽宗动无星可信其有也然西法又谓动天之外有静天何以知之曰此亦可以理信者也凡物之动者必有不动者以为之根动而不息者莫如天则必有常不动者以为之根矣天之有两极也亦如硙之有脐戸之有枢也枢不动故户能开阖脐不动故硙能运旋若枢与脐动则开阖运旋之用息矣然枢能制户脐能运硙而此二者又谁制之而能不动哉则以其所丽者常静也【如户之枢附于屋而屋仍有基基即地也脐植于硙之下半而硙安于架架仍在地也人但知枢之于戸脐之于硙能以至小为至大之君而不知此至小者之根又实连于大地之体】唯天亦然动天之周系于两极而此两极者必有所丽其所丽者又必常静故能终古凝然而为动天之枢也使其不然极且自动而何以为动天之所宗乎或曰天不可以戸硙拟也戸硙物也天则一气旋转而已岂必有所附着而后其枢不动哉曰天之异于物者大小也若以不动为动之根无异理也且试以实测徴之自古言北极出地三十六度而阳城之测至今未改也元史测大都北极之高四十度半今以西测徴之亦无分寸之移故言嵗差者不及焉【如黄赤古逺今近日轮毂渐近地心之类皆有今昔之差惟北极出地之度不变】使天惟兀然浮空而又常为动而不息之物北极高下亦将改易而何以高度常有定测乎朱子尝欲先论太虚之度然后次及天行太虚者静天之谓也 【朱子曰而今若就天里看时只是行得三百六十五度四分度之一若把天外来説则是一日过了一度蔡季通尝言论日月则在天里论天则在太虚空里若在太虚空里观那天自是日日裏得不在旧时处又曰厯法蔡季通説当先论天行次及七政此亦未善要当先论太虚以见三百六十五度四分度之一一一定位然后论天行以见天度加损虚度之嵗分嵗分既定然后七政乃可齐耳】 【临川吴氏曰天与七政八者皆动今人只将天做硬盘却以七政之动在天盘上行今当以太虚中作一空盘却以八者之行较其迟速】 论无星之天【其二】 问静天为两极所丽即朱子所言太虚是已然西法又设东西嵗差南北嵗差二重之天其説何居曰西人象数之学各有授受师説故其法亦多不同此两嵗差之天利西泰言之徐文定公作厯书时汤罗诸西士弃不复用厥后穆氏着天歩真原北海薛氏本之着天学防通则又用之故知其授受非一家也今即其説推之则穆与利又似不同何也西人测验谓黄赤之距渐近此亦可名南北差若东西嵗差则恒星之东移是已而恒星既为一重天不应复有东西嵗差之天则西泰所言不知何指也至于穆薛之説则又不正言南北东西两嵗差而别有加算谓之黄道差春分差其法皆作小圏于心而大圏之心循之而转若干年在前若干年在后其年皆以千计有图有数有法且谓作厯书时弃之非是也然于西泰初説亦不知同异何如耳然则何以断其有无曰天动物也但动而有常耳常则乆乆则不能无秒忽之差差在秒忽固无损于有常之大较而要之其差亦自有常也善歩者以数合差而得其衰序则俨然有形可説有象可图焉如小轮之类皆是物也要之为图为説总以得其差数而止其数既明其差既得又何必执其形象以生聚讼哉 论天重数 问七政既有高下恒星又复东移动天一日一周静天万古常定则天之重数岂不截然可数欤曰此亦据可见之度可推之数而知其必有重数耳若以此尽天体之无穷则有所不能即以西説言之有以天为九重者则以七曜各居其天并恒星宗动而九也有以天为十二重者则以宗动之外复有南北嵗差东西嵗差并永静之天十二也有以天为层层相裹如葱头之皮密密相切略无虚隙者利氏之初説也又有以天虽各重而其行度能相割能相入以是为天能之无尽者则以火星有时在日天之下金星有时在日天之上而为此言厯书之説也又有以金水二星绕日旋转为太阳之轮故二星独不经天是金水太阳合为一重而九重之数又减二重共为七重也然又谓五星皆以太阳为本天之心葢如是则可以免火星之下割日天是又将以五星与太阳并为一天而只成四重也【一月天二太阳五星共为一天三恒星天四宗动天】其説之不同如此而莫不持之有故其可以为定议乎尝试论之天一而已以言其浑沦之体则虽不动之地可指为大圜之心而地以上即天地之中亦天不容有二若由其苍苍之无所至极以徴其体势之高厚则虽恒星同在一天而或亦有高下之殊儒者之言天也当取其明确可徴之辞而略其荒无稽之事是故有可见之象则可以知其有附丽之天有可求之差则可以知其有高下之等【如恒星七政皆有象有差】有一种之行度知其有一枢纽【如动天无象可见而有行度】此皆实测之而有据者也而有常动者以为之运行知其必有常静者以为之根柢【静天与地相应故地亦天根】此则以理断之而不疑者也若夫七政恒星相距之间天宇辽阔或空澄而精湛或絪緼而弥纶无星可测无数可稽固思议之所穷亦敬授之所缓矣 论天重数二 问重数既难为定则无重数之説长矣曰重数虽难定而必以有重数为长何也以七政之行非赤道也临川掲氏曰天无层数七政皆能动转试以水注圆噐而急旋之则见其中沙土诸物近心者凝而不动近边者随水而旋又且迟速洄漩以成防逆诸行矣又试以丸置于圜盘而輙转其盘则其丸既为圜盘所掣与盘并行而丸之体圎亦能自转而与盘相逆以成小轮之象矣此两逾明切诸家所未及然以七政能自动而废重数之説犹未能无滞碍也何也谓天如盘七政如丸盘之与丸同在一平面故丸无附丽而能与盘同行又能自动也若天则浑圆而非平圆又天体自行赤道而七政皆行黄道平斜之势甚相差违若无本天以带之而但如丸之在盘则七政之行必总防于动天之腰围阔处皆行赤道而不能斜交赤道之内外以行黄道故曰以有重数为长也曰天既有重数则当如西人初説七政在天如木节在板而不能自动矣曰七政各居其天原非如木节之在板也各有小轮皆能自动但其动只在本所略如人之目睛未尝不左右頋盼而不离睂睫之间也若如板之有节则小轮之法又将安施即西説不能自通矣故惟七政各有本天以为之带动斯能常行于黄道而不失其恒惟七政之在本天又能自动于本所斯可以施诸小轮而不碍掲説与西説固可并存而不废者也 论左旋 问天左旋日月五星右旋中西两家所同也自横渠张子有俱左旋之説而朱子蔡氏因之近者临川掲氏建寕游氏又以槽丸盆水譬之此孰是而孰非曰皆是也七曜右旋自是实测而所以成此右旋之度则因其左旋而有动移耳何以言之七曜在天每日皆有相差之度厯家累计其每日差度积成周天中西新旧之法莫不皆然夫此相差之度实自西而东故可以名之右旋然七曜每日皆东升西降故又可以名之左旋西厯谓七曜皆有东西两动而并出于一时盖以此也夫既云动矣动必有所向而一时两动其势不能古人所以有蚁行磨上之喻而近代诸家又有人行舟中之比也【七曜如人天如舟舟扬帆而西人在舟中向舟尾而东行岸上望之则见人与舟并西行矣】又天之东升西没自是赤道七曜之东移于天自是黄道两道相差南北四十七度【自短规至长规合之得此数】虽欲为槽丸盆水之喻而平面之行与斜转之势终成疑义安可以遽废右旋之实测而从左转之虚理哉然吾终谓朱子之言不易者则以天有重数耳曰天有重数何以能防其为左旋曰天虽有层次以居七曜而合之总一浑体故同为西行也同为西行矣而仍有层次以生微差层次之高下各殊则所差之多寡亦异故七曜各有东移之率也然使七曜所差只在东西顺逆迟速之间则槽丸盆水之譬亦已足矣无如七曜东移皆循黄道而不由赤道则其与动天异行者不徒有东西之相违而且有南北之异向以此推知七曜在各重之天皆有定所而其各天又皆顺黄道之势以黄道为其腰围中广而与赤道为斜交非仅如丸之在槽沙之在水皆与其噐平行而但生退逆也【丸在槽与其盘为平面沙在水与其噐为平面故丸与盘同运而生退逆水与沙并旋而生退逆其顺逆两象皆在一平面】盖惟其天有重数故能动移惟其天之动移皆顺黄道斯七曜东移皆在黄道矣是故左旋之理得重数之说而益明曰谓右旋之度因左旋而成何也曰天既有重数矣而惟恒星天近动天故西行最速防与动天相若【六七十年始东移一度】自土星以内其动渐杀以及于地球是为不动之处则是制动之权全在动天而恒星以内皆随行也使非动天西行则且无动无动即无差又何以成此右旋之筭哉其势如陶家之有钧盘运其边则全盘皆转又如运重者之用飞轮其运动也亦以边制中假令有小盘小轮附于大钧盘大飞轮之上而别为之枢则虽同为左旋而因其制动者在大轮其小者附而随行必相差而成动移以生逆度又因其枢之不同也虽有动移必与本枢相应而成斜转之象焉【此之斜转亦在平面非正喻其平斜但聊以明制动之势】夫其退逆而右也因其两轮相叠其退转而斜行也因于各有本枢而其所以能退逆而斜转者则以其随大轮之行而生此动移也若使大者停而不行则小者之逆行亦止而斜转之势亦不可见矣朱子既因旧説释诗又极取张子左旋之説盖右旋者已然之故而左旋者则所以然之理也西人知此则不必言一时两动矣故掲氏以丸喻七曜只可施于平面而朱子以轮载日月之喻兼可施诸黄赤与西説之言层次者实相通贯理至者数不能违此心此理之同洵不以东海西海而异也【朱子语类问经星左旋纬星与日月右旋是否曰今诸家是如此説横渠説天左旋日月亦左旋看来横渠之説极是只恐人不晓所以诗只载旧説或曰此亦易见如以一大轮在外一小轮载日月在内大轮转急小轮转慢虽都是左转只有急冇慢便觉日月是右转了曰然但如此则厯家逆字皆着改做顺字退字皆着改做进字】 论黄道有极 问古者但言北辰浑天家则因北极而推其有南极今西法乃复立黄道之南北极一天而有四极何也曰求经纬之度不得不然也盖古人治厯以赤道为主而黄道从之故周天三百六十五度皆从赤道分其度一一与赤道十字相交引而长之以防于两极若黄道之度虽亦匀分周天【三百六十五】而有经度无纬度则所分者只黄道之一线初不据以分宫故授时十二宫惟赤道匀分各得三十度奇黄道则近二至者一宫或只二十八度近二分者一宫多至三十二度【皆约整数】若是其濶狭悬殊者何哉过宫虽在黄道而分宫仍依赤道赤道之匀度抵黄道而成斜交势有横斜遂生濶狭故曰以赤道为主而黄道从之也向使厯家只歩日躔此法已足无如月五星皆依黄道行而又有出入其行度之舒亟转变为法多端皆以所当黄道及其距黄之逺近内外为根故必先求黄道之经纬西厯之法一切以黄道为主其法匀分黄道周天度为十二宫其分宫分度之经度线皆一一与黄道十字相交自此引之各成经度大圏以周于天体则其各圏相交以为各度辏心之处者不在赤道南北极而别有其心是为黄道之南北极自黄道两极出线至黄道【即黄道上分宫分度之线引而成大圏以辏心者也心即黄极故亦可云从极出线】其纬各得九十度而均【极距黄道四面皆均故分宫分度线上之纬度皆均】以此各线之纬聮为圏线皆与黄道平行自黄道上相离一度起逐度作圏但其圏渐小以至九十度则成一而防于黄极是为纬圏【一名距等圈】曰黄道既有经纬则必有所宗之极测筭所需固巳然则为测筭家所立欤抑真有是以为运转之枢耶曰以恒星东移言之则真有是矣何则古法嵗差亦只在黄道之一线今以恒星移则普天星斗尽有古今之差惟黄道极终古不动岂非真有黄极以为运转之枢哉曰然则北辰非黄极也今曰惟黄极不动岂北辰亦动与曰以毎日之周转言则周天星度皆东升西没惟北辰不动以恒星东移之差言则虽北辰亦有动移而惟黄极不动盖动天西旋以赤道之极为枢而恒星东移以黄道之极为枢皆本实测各有至理也【古今测极星离不动处渐逺具见前篇】 论厯以日躔为主中西同法 问天方等国以太隂年纪嵗【即囬回法】欧逻巴国以恒星年纪嵗【即西洋本法】若是其殊意者起筭之端亦将与中土大异而何以皆用日躔为主欤曰其纪嵗之不同者人也其起筭之必首日躔者天也夫天有日如国有君史以纪国事厯以纪天行而史之纲在帝纪厯之纲在日躔其义一也是故太隂之行度多端无以凖之凖于日也【太隂有周天有防望有迟疾入转有交道表里皆以所厯若干日而知其行度之率】五星之行度多端无以凖之凖于日也【五星亦有周天有防望有盈缩入厯有交道表里略同太隂亦皆以日数为率】恒星之行度甚迟无以凖之亦凖于日也【恒星东移是生嵗差亦以日度知之而得其行率】不先求日躔且不能知其何年何日而又何以施其测騐推歩哉且夫天下之事必先得其着而后可以察其防必先得其易而后可以及其难必先得其常而后可以尽其变故以测騐言之日最着也以推歩言之日最易也以经纬之度言之日最有常也悬象常明而无伏见是为最着【若月与星则有晦伏】立术歩筭道简不繁是为最易【歩月五星之法皆繁于日】恒星东移而分至不易是为经度之有常月五星出入黄道而日行黄道中线是为纬度之有常古之圣人以宾饯永短定治厯之大法万世遵行所谓易简而天下之理得也愚故曰今日之厯愈宻皆圣人之法所该此其一徴矣 论黄道 问黄道斜交赤道而差至四十七度何以徴之曰此中西之公论要亦以日轨之高下知之也今以表测日景则夏至之景短以其日近天顶而光从直下也冬至之景长以其日不近天顶而光从横过也夫日近天顶则离地逺而地上之度高日不近天顶则离地近而地上之度低测筭家以法求之则夏至之日度高与冬至之日度高相较四十七度半之则二十三度半为日在赤道南北相距之度也然此相较四十七度者非倐然而高顿然而下也逐日测之则自冬至而春而夏其景由长渐短日度由低渐高至夏至乃极自夏至而秋而冬其景由短渐长日度由高渐低至冬至乃极其进退也有序其舒亟也有恒而又非平差之率故知其另有一圏与赤道相交出其内外也曰日行黄道固无可疑月与五星樊然不齐未尝正由黄道也今曰七曜皆由黄道何也曰黄道者光道也【古□字从炗从日炗字即古光字】日为三光之主故独行黄道而月五星从之虽不得正由黄道而不能逺离故皆出入于黄道左右要不过数度止耳古厯言月入隂阳厯离黄道逺处六度西厯测止五度奇又测五星出入黄道惟金星最逺能至八度其余纬度乃更少于太隂是皆以黄道为宗故也故月离黄道五度奇合计内外之差共只十度奇若其离赤道也则有逺至二十八度半【以黄道距赤道二十三度半加月道五度奇得之】合计内外之差则有相差五十七度奇【以月在赤道内二十八度半在外亦如之并之得此数】金星离黄道八度奇合计内外之差共只十六度奇若其离赤道也则有逺至三十一度奇【以黄赤之距加星距黄道】合计内外之差则有相差六十二度奇【以星距赤道内外各三十一度得之】是月五星之出入黄道最逺者于赤道能为更逺岂非不宗赤道而皆宗黄道哉 论经纬度【黄赤】 问黄道有极以分经纬然则经纬之度惟黄道有之乎曰天地之间盖无在无经纬耳约略言之则有有形之经纬有无形之经纬而又各分两条曷言乎无形之经纬凡经纬之与地相应者其位置虽在地而实在无形之天朱子所谓先论太虚一一定位者此也曷言乎有形之经纬凡经纬之在天者虽去人甚逺而有象可徴即黄赤道也是故黄道有经纬赤道亦有经纬两道之经度皆与本道十字相交引而成大圏【经度皆三百六十两度相对者连而成大圏故大圏皆一百八十】其圏相防交必皆防于其极两道之纬圏皆与本道平行而逐度渐小以至于本极而成一此经纬之度两道同法也然而两道之相差二十三度半故其极亦相差二十三度半而两道纬圏之差数如之矣【以黄纬为主则赤纬之斜二十三度半以赤纬为主而观黄纬则其差亦然】若其经度则两道之相同者惟有一圈【惟磨羯巨蟹之初度初分聫而为一圏此圏能过黄赤两极】其余则皆有相差之度而其差又不等【惟一圏能过两极则黄赤两经圏合而为一圏以黄赤两极同居磨羯巨蟹之初也此外则黄道经圏只能过黄极而不过赤极赤道经圏亦只过赤极而不过黄极离磨羯巨蟹初度益逺其势益斜其差益多故逐度不等】此其势如以两重罾冒于圎球则网目交加纵横错午而各循其顶以求之条理井然至而不可乱故曰在天之经纬有形而又分黄赤两条也 论经纬度二【地平】 问经纬之与地相应者一而已矣何以亦分两条曰黄赤之分两条者有斜有正也地度之分两条者有横有立也今以地平分三百六十经度【三十度为一宫共十二宫再剖之则二十四向】四面八方皆与地平圏为十字而引长之成曲线以辏于天顶皆相遇成一故天顶者地平经度之极也【其经度下逹而辏于地心亦然】又将此曲线各匀分九十纬度【即地平上高度又谓之渐升度】而逐度聮之作横圏与地面平行而渐高则渐小防于天顶则成一即地平纬圏也【其地平下作纬圏至地心亦然如太阳朦影十八度而尽太隂十二度而见之类皆用此度也】此地平经纬之度为测验所首重其实与太虚之定位相应者也然此特直立之经纬耳【其经纬以天顶地心为两极是直立也其地平即腰围广处而纬圏与地平平行渐小而至天顶亦成直上之形矣】又有横偃之经纬焉其法以卯酉圏匀分三百六十度【亦三十度为一宫此圏上过天顶下过地心而正交地平于卯酉之中即地平经圈之一也其三百六十度亦即经圈上所分纬度但今所用只圈上分度之一防而不更作与地平平行之纬圈】从此度分作十字相交之线引而成大圏【其圏一百八十半在地平之上半在其下其地平上半圏皆具半周天度势皆自正北趋正南穹隆之势与天相际度间所容中阔而两末鋭略如剖其两鋭在南北其中濶在卯酉】大圏相遇相交皆防于正子午而正切地平即子午规与地平规相交之一【在地平直立经纬原用子午规卯酉规为经圏地平规为围之纬圏今则以卯酉规为围而子午规与地平规则同为经度圈】此一即为经度之极而经度宗焉【立象学安十二宫用此度也】又自卯酉规向南向北逐度各作半圈如虹桥状而皆与卯酉规平行【地平下半圏亦然合之则各成全圏】但离卯酉规渐逺亦即渐小以防于其极【即地平规之正子午一】是其纬圏也【测算家以立晷取倒影定时用此度也】此一种经纬则为横偃之度【其经度以地平之子午为两极而以卯酉规为其围是横偃之势】一直立一横偃其度皆与太虚之定位相应故曰无形之经纬亦分两条也不但此也凡此无形之经纬皆以人所居之地平起算所居相距不过二百五十里即差一度【此以南北之里数言也若东西则有不二百五十里而差一度者矣何也地圎故也】而所当之天顶地平俱变矣地平移则高天顶易则方向殊跬歩违离辗转异视殆千变而未有所穷故曰天地之间无在无经纬也 地平经纬有适与天度合者如人正居两极之下则以一极为天顶一极为地心而地平直立之经纬即赤道之经纬矣若正居赤道之下则平视两极一切地平之子一切地平之午而地平横偃之经纬亦即赤道之经纬矣 论经纬相连之用及十二宫 问经纬度之交错如此得无益増测算之难乎曰凡事求之详斯用之易惟经纬之详此厯学所以易明也何也凡经纬度之法其数皆相待而成如鳞之相次网之在纲衰序秩然而不相凌越根株合散交互旁通有全则有分有正则有对即显见隠举二知三故可以经度求纬亦可以纬度求经有地平之经纬即可以求黄赤有黄赤之经纬亦可以知地平而且以黄之经求赤之经亦可以黄之纬求赤之经以黄之纬求赤之纬亦可以黄之经求赤之纬用赤求黄亦复皆然宛转相求莫不脗合施于用从衡变化而不失其常求其源浑行无穷而莫得其隙夫是以布之于算而能穷差变笔之于图而能肖星躔制之于噐而不违悬象此其道如棊方罫之间固善奕者之所当尽也曰经纬之度既然以为十二宫则何如曰十二宫者经纬中之一法耳浑圆之体析之则为周天经纬之度周天之度合之成一浑圜而十二分之则十二宫矣然有直十二宫焉有衡十二宫焉有斜十二宫焉又有百游之十二宫焉以天顶为极依地平经度而分者直十二宫也其位自子至卯左旋周十二辰辨方正位于是焉用之以子午之在地平者为极而以地平子午二规为界界各三宫者衡十二宫也其位自东地平为第一宫起右旋至地心又至西地平而厯午规以复于东立象安命于是乎取之赤道十二宫从赤道极而分极出地有高下而成斜立是斜十二宫也加时之法于是乎取之则其定也西行之度于是乎纪之则其游也黄道十二宫从黄道极而分黄道极绕赤道之极而左旋而黄道之在地上者从之转侧不惟日异而且时移晷刻之间周流迁转正邪升降之度于是乎取之故曰百游十二宫也然亦有定有游定者分至之限游者恒星嵗差之行也知此数种十二宫而俯仰之间缕如掌纹矣然犹经度也未及其纬故曰经纬中之一法也 论周天度 问古厯三百六十五度四分之一而今定为三百六十何也岂天度亦可增损欤曰天度何可增减盖亦人所命耳有布帛于此以周尺度之则于度有余以汉尺度之则适足尺有长短耳于布帛岂有増损哉曰天无度以日所行为度毎嵗之日既三百六十五日又四之一矣古法据此以纪天度宜为不易奈何改之曰古法以太阳一日所行命之为度然所谓四之一者讫无定率故古今公论以四分厯最为疎阔而厯代斗分诸家互异至授时而有减嵗余增天周之法则日行与天度较然分矣又况有冬盈夏缩之异终嵗之间固未有数日平行者哉故与其为畸零之度而初不能合于日行即不如以天为整度而用为起数之宗固推歩之善法矣【周天者数所从起而先有畸零故析之而为半周天有象限为十二宫为二十四气七十二莫不先有畸零而日行之盈缩不与焉故推歩稍难今以周天为整数而但求盈缩是以整御零为法倍易】且所谓度生于日者经度耳而厯家所难尤在纬度今以三百六十命度则经纬通为一法【若以嵗周命度则经度既有畸零凖之以为纬度畸零之算愈多若为两种度法则将变率相从益多纠葛】故黄赤虽有正斜而度分可以互求七曜之天虽有内外大小而比例可以相较以其为三百六十者同也半之则一百八十四分之则九十而八线之法缘之以生故以制测噐则度数易分以测七曜则度分易得以算三角则理法易明吾取其适于用而已矣可以其出于囘囘泰西而弃之哉【三百六十立算实本囘囘至欧罗巴乃发眀之耳】况七曜之顺逆诸行进退损益全在小轮为推歩之要眇然而小轮之与大轮比例悬殊若镒与铢而黍累不失者以其度皆三百六十也以至太隂之防望转交五星之嵗轮无一不以三百六十为法而地球亦然故以日躔纪度但可施于黄道之经而整度之用该括万殊斜侧纵横周通环应可谓执简御棼法之最善者矣 厯算全书卷二 [book_title]卷三 钦定四库全书 厯算全书卷三 宣城梅文鼎撰 厯学疑问三 论盈缩高卑 问日有高卑加减始于西法欤曰古厯有之且详言之矣但不言卑高而谓之盈缩耳曰日何以有盈缩曰此古人积而得之者也秦火以还典章废阙汉晋诸家皆以太阳日行一度故一歳一周天自北齐张子信积合加时始觉日行有入气之差而立为损益之率又有赵道严者复凖晷景长短定日行进退更造盈缩以求亏食至隋刘焯立躔度与四序升降为法加详厥后皆相祖述以为歩日躔之凖葢太阳行天三百六十五日惟只两日能合平行【一在春分前三日一在秋分后三日一年之内能合平行者惟此二日】此外日行皆有盈缩而夏至缩之极毎日不及平行二十分之一冬至盈之极又过于平行二十分之一两者相较为十分之一以此为盈缩之宗而过此皆以渐而进退焉此盈缩之法所由立也曰日躔既毎日有盈缩则歳周何以有常度曰日行毎日不齐而积盈积缩之度前后自相除补故歳周得有常度也【细考之古今歳周亦有防差此只论其大较则实有常度】今以授时之法论之冬至日行甚速毎日行一度有奇厯八十八日九十一刻当春分前三日而行天一象限【古法周天四之一为九十一度三十分奇下同】谓之盈初厯此后则毎日不及一度其盈日损厯九十三日七十一刻当夏至之日复行天一象限谓之盈末厯夫盈末之行毎日不及一度而得为盈厯者以其前此之积盈未经除尽总度尚过于平行故仍谓之盈若其毎日细行固悉同缩初此盈末缩初可为一法也试以积数计之盈初日数少而行度多其较为二度四十分盈末日数多而行度少其较亦二度四十分以盈末之所少消盈初之所多则以半歳周之日【共一百八十二日六十二刻奇】行半周天之度【一百八十二度六十二分奇】而无余度矣夏至日行甚迟毎日不及一度厯九十三日七十一刻当秋分后三日而行天一象限谓之缩初厯此后则每日行一度有奇其缩日损厯八十八日九十一刻复当冬至之日而行天一象限谓之缩末厯夫缩末之行每日一度有奇而亦得为缩厯者以其前此之积缩未能补完总度尚后于平行故仍谓之缩若其毎日细行则悉同盈初此缩末盈初可为一法也试以积数计之缩初日数多而行度少其较为二度四十分缩末日数少而行度多其较亦二度四十分以缩末之所多补缩初之所少则亦以半歳周之日行半周天之度而无欠度矣夫盈厯缩厯既皆以前后自相除补而无余欠则分之而以半歳周行半周天者合之即以一歳周行一周天安得以盈缩之故疑歳周之无常度哉 再论盈缩高卑 问日有盈缩是矣然何以又谓之高卑曰此则回回泰西之说也其说曰太阳在天终古平行原无盈缩人视之有盈缩耳夫既终古平行视之何以得有盈缩哉葢太阳自居本天而人所测其行度者则为黄道黄道之度外应太虚之定位【即天元黄道与静天相应者也】其度匀剖而以地为心太阳本天度亦匀剖而其天不以地为心于是有两心之差而高卑判矣是故夏至前后之行度未尝迟也以其在本天之高半故去黄道近而离地远远则见其度小【谓太阳本天之度】而人自地上视之迟于平行矣【缩初盈末半周是太阳本天高处故在本天行一度者在黄道不能占一度而过黄道迟】是则行度之所以有缩也冬至前后之行度未尝速也以其在本天之低半故去黄道远而离地近近则见其度大【亦谓本天之匀度】而人自地上视之速于平行矣【盈初缩末半周是太阳本天低处故在本天行一度者在黄道占一度有余而过黄道速】是则行度之所以有盈也且夫行度有盈缩而且日日不同则不可以筹防御而今以圜法解之不同心之理通之在高度不得不迟在卑度不得不速高极而降迟者不得不渐以速卑极而升速者不得不渐以迟迟速之损益循圜周行与算数相防是则盈缩之征于实测者皆一一能得其所以然之故此高卑之説深足为治厯明时之助者矣 太阳之平行者在本天太阳之不平行者在黄道平行之在本天者终古自如不平行之在黄道者晷刻易率惟其终古平行知其有本天惟其有本天斯有高卑以生盈缩不平行之率以平行而生者也惟其盈缩多变知其有高卑惟其盈缩生于高卑验其在本天平行平行之理又以不平行而信者也夫不平行之与平行道相反矣而求诸圜率适以相成是葢七曜之所同然而在太阳尤为明白而易见者也【月五星多诸小轮加减故本天不同心之理惟太阳最明】 论最高行 问以高卑疏盈缩确矣然又有最高之行何耶曰最高非他即盈缩起算之端也盈缩之算既生于本天之高卑则其极缩处即为最高如古法缩厯之起夏至也极盈处即为最卑如古法盈厯之起冬至也【亦谓之最高冲或省曰高冲】然古法起二至者以二至即为盈缩之端也西法则极盈极缩不必定于二至之度而在其前后又各年不同故最高有行率也其説曰上古最高在夏至前今行过夏至后毎年东移四十五秒【今又定为一年行一分一秒十防】何以征之曰凡最高为极缩之限则自最高以后九十度及相近最高以前九十度其距最高度等则其所缩等何也以视度之小于平度者并同也【古法以盈末缩初通为一限亦是此意】高衡为极盈之限则自高冲以后九十度及相近高冲以前九十度其距高冲度等则其所盈亦等何也以视度之大于平度者并同也【古法以缩末盈初通为一限亦是此意】今据实测则自定气春分至夏至一象限【即古盈末限】之日数与自夏至后至定气秋分一象限【即古缩初限】之日数皆多寡不同又自定气秋分至冬至一象限【即古缩末限】之日数与自冬至后至定气春分一象限【即古盈初限】之日数亦多寡不同由是观之则极盈极缩不在二至明矣曰若是则古之实测皆非欤曰是何言也言盈缩者始于张子信而后之厯家又谓其损益之未得其正由今以观则子信时有其时盈缩之限后之厯家又各有其时盈缩之限测验者各据其时之盈缩为主则追论前术觉其未尽矣此岂非最高之有动移乎又古之盈缩皆以二十四气为限至郭太史始加宻算立为毎日毎度之盈缩加分与其积度由今考之则郭太史时最高卑与二至最相近【自厯元戊辰逆溯至元辛巳三百四十八年而最高卑过二至六度以今率毎年最高行一分一秒十防计之其时最高约与夏至同度以西又旧率毎年高行四十五秒计之其时最高已行过夏至一度三十余分其距度亦不为甚逺也】故盈缩起二至初无谬误测算虽宻秪能明其盈缩细分若最高距至之差无縁可得非考验之不精也 论高行周天 问最高有行能周于天乎抑只在二至前后数十度中东行而复西转乎曰以理徴之亦可有周天之行也曰然则何以不徴诸实测曰无可据也厯法西传曰古西士去今一千八百年以三角形测日轨记最高在申宫五度三十五分今以年计之当在汉文帝七年戊辰【自汉文帝戊辰顺数至厯元戊辰积一千八百算外】此时西厯尚在权舆越三百余年至多禄某而诸法渐备然则所谓古西士之测算或非精率然而西史之所据止此矣又况自此而逆溯于前将益荒远而高行之周天以二万余年为率亦何从而得其起算之端乎是故以实测而知其最高之有移动者只在此千数百年之内其度之东移者亦只在二至前后一宫之间若其周天则但以理断而已曰以理断其周天亦有説欤曰最高之法非特太阳有之而月五星皆然其加减平行之度者亦中西两家所同也故中厯太阳五星皆有盈缩太隂则有迟疾在西法则皆曰高卑视差而已然则月孛者太隂最高之度也而月孛既有周天之度矣太阳之最高何独不然故曰以理徴之最高得有周天之行也 论小轮 问以最高疏盈缩其义已足何以又立小轮曰小轮即高卑也但言高卑则当为不同心之天以居日月小轮之法则日月本天皆与地同心特其本天之周又有小轮为日月所居是故本天为大轮负小轮之心向东而移日月在小轮之周【即邉也】向西而行大轮移一度日月在小轮上亦行一度大轮满一周小轮亦满一周而盈缩之度与高卑之距皆不谋而合囘囘厯以七政平行为中心行度益谓此也 <子部,天文算法类,推步之属,历算全书,卷三> 凡日月在小轮上半顺动天西行故其右移之度迟于平行为减在小轮下半逆动天而东故其右旋之度速于平行为加【五星同理】若在上下交接之时小轮之度直下不见其行谓之留际留际者不东行不西行无减无加与平行等此小轮上逐度之加减以上下而分者也【用第一图自辛留际过戊最高至已为上半皆西行自已留过际庚最卑至辛为下半皆东行巳辛两留际循小轮之旁不见其动】 若以入表则分四限小轮上半折半取中为最高小轮下半折半取中则为最卑最卑最高之防皆对小轮心与地心而成直线七政居此即与平行同度故为起算之端假如七政起最高在小轮上西行能减东移之度半象限后西行渐缓所减渐少至一象限而及留际不复更西即无所复减然积减之多反在留际何也七政至此其视度距小轮心之西为大也在古法则为缩初【用第一图自戊至巳一象限其减度最大为己甲小轮半径】既过留际而下转而东行本为加度因前有积减仅足相补其视行仍在平行之西至一象限而及最卑积减之数始能补足而复于平行是为缩末【用第一圗自巳留际至庚最卑一象限】 又如七政至最卑在小轮下东行能加东移之度半象限后东行渐缓所加渐少至一限象而又及留际不复更东亦无所复加然积加之多亦在留际何也七政至此其视度距小轮心之东为大也在古法则为盈初【第一圗自庚最卑至辛留际一象限加度最大为甲辛小轮半径】过留际而上复转西行即为减度然因前有积加仅足相消其视行仍在平行之东至一象限而复及最高积加之度始能消尽而复于平行是为盈末【第一图自辛防际至戊最高一象限】此则表中入算加减从小轮之左右而分者也 再论小轮及不同心轮 小轮之用有二其一为迟速之行在古厯则为日五星之盈缩月之迟疾西法则总谓之加减即前所疏者是也其一为高卑之距即回回厯影径诸差是也凡七政之居小轮最高其去人逺故其体为之见小焉其在最卑去人则近故其体为之加大焉騐之于日月交食尤为着明【别条详之】是故所谓平行者小轮之心而所谓迟速者小轮之边与其心前后之差【即东西】所谓高卑者小轮之边与其心上下之距也知有小轮而进退加减之行度逺近大小之视差靡所不贯矣 然则何以又有不同心之算曰不同心之法生于小轮者也试以第二图明之甲乙丙丁圏七政之本天即小轮心所行之道也以子为心即地心也假如小轮心在甲则七政在戊为小轮最高小轮心自甲东移一象限至乙七政之在小轮亦从戊西行一象限至巳为留际小轮心东移满半周至丙七政在小轮亦行半周至庚为最卑由是小轮心东移满二百七十度至丁七政亦行小轮二百七十度至留际辛小轮心东移满一周复至甲七政行小轮上亦行满一周复至最高戊若以小轮上七政所行之戊巳庚辛诸聫之即成大圏此圏不以地心为心而别有其心故曰不同心圈也如图地心在子不同心圈之心在丑丑子两心之差与小轮之半径等故可以小轮立算者亦可以不同心立算而行度之加减与视径之大小亦皆得数相符也 论小轮不同心轮孰为本法 问二者之算悉符果孰为本法曰晶宇寥廓天载无垠吾不能飞形御气翺歩乎日月之表小轮之在天不知其有焉否耶然而以求朓朒之行则既有其度矣以量高卑之距则又有其差矣虽谓之有焉可也至不同心之算则小轮实巳该之何也健行之体外实中虚自地以上至于月天大气所空洞无物故各重之天虽有高卑而高卑两际只在本天【七政各重之天相去甚逺其间甚厚故可以容小轮而其最高最卑皆不越本重之内】非别有一不同之心绕地而转也【不同心之天既同动天西运则其心亦将绕地而旋】况七政两心之差各一其率若使其不同之心皆绕地环行亦甚涣而无统矣愚故曰不同心之算生于小轮而小轮实已该之观回回厯但言小轮可知其为本法而地谷于西术最后出其所立诸圗悉仍用小轮为説亦足以徴矣 论小轮不同心轮各有所用 问小轮与不同心轮既异名而同理择用其一不亦可乎曰论相因之理则不同心之算从小轮而生论测算之用则小轮之径亦从不同心而得故推朒朓之度于小轮特亲【小轮心即平行度也从最高过轮心作线至地心为平行指线剖小轮为二则小轮右半在平行线西为朒左半在平行线东为朓观图易了】而求最高之行以不同心立算最切然则其理互通其用相辅并存其説亦足以见圜行之无方而且可为参稽之借矣 最高在天不可以目视不可以噐测惟据朓朒之度以不同心之法测之而得其两心之差是即为小轮之半径于以作圗立算而朓朒之故益复犁然是故不同心者即测小轮之法也 论小轮心之行及小轮上七政之行皆非自动 问小轮心逆动天而右旋日月五星之在小轮也又逆本天而顺动天以左旋何若是其交错欤意者七政各有能动之性而其动也又恒以逆为顺欤今夫鱼溯川而游顺鳞鬐也鸟逆风而翔便羽毛也夫七政之行亦将若是而已矣曰子以小轮心自为一物而不与本天相连乎曰非也小轮心常在本天之周殆相连耳曰七政居小轮之周岂不若小轮心之在本天乎曰然曰然则小轮心在本天七政在小轮体皆相连其非若鱼之川泳鸟之云飞也审矣然则何为而有动移曰小轮心非能自动也小轮之动本天之动也七政亦非自动也七政之动小轮之动也其故何也盖小轮之心既与本天相连必有定处因本天为动天所转与之偕西而不及其速以生退度故小轮心亦有退度焉厯家纪此退度以为平行【回回厯所谓中心行度】故曰小轮之动本天之动也然则小轮心者小轮之枢也枢连于本天不动故轮能动而七政者又相连于小轮之周者也小轮动则七政动矣故曰七政之动小轮之动也七政虽动不离小轮轮心虽移不离本天又恒为周动而有定法岂若游鳞征鸟之于波澜风霄而莫限所届哉 再论小轮上七政之行 问本天移故小轮心移小轮动故七政动是则然矣然何以七政在小轮上西行不与轮心同势岂非七政自有行法欤曰七政之居小轮也有一定之向本天挈小轮心东移而七政在小轮上常向最高殆其精气有以摄之也故轮心东移一度小轮上七政亦西迁一度以向最高譬之罗金小轮者其盘也小轮心者置针之处也七政所居则针所指之午位也试为大圆周分三百六十度【以法周天】别为大圏加其上使与大圆同心而可运【以法同心轮】乃置罗金于大圏之正午而依针以定盘则针之午即盘之午【此如小轮在最高而七政居其顶与最高同处也】于是运大圏东转使罗金离午而东【此如本天挈小轮而东移也】则盘针之指午者必且西移而向丁向未【因正午所定之盘不复更置则此时之丁之未实为针之午此如小轮从本天东移而七政西迁居小轮之旁以向最高之方】盘东移一度针亦西移一度盘东移一宫针亦西移一宫盘东行半周至大圆子位则针在盘上亦西移半周而反指盘之子【此时盘之子实针之午此如小轮心行至最高冲而七政居小轮之底在小轮为最卑而所向者最高之方也】盘东移三百六十度而复至午针亦西移一周而复其故矣是何也针自向午不以盘之东移而改其度自盘上观之见为西移耳七政之常向最高何以异是【七政在小轮上常向最高之方观第二图可见】 论小轮非一 问小轮有防曰小轮以算视行视行非一故小轮亦非一也凢算视行有二法或用不同心轮则惟月五星有小轮而日则否何也以盈缩高卑即于不同心之轮可得其度故不以小轮加减而小轮之用已蔵其中也或用同心轮负小轮则日有一小轮月五星有两小轮其一是高卑小轮为日五星之盈缩月之迟疾即不同心之算七政所同也其一是合望小轮在月为倍离【即晦朔望】在五星为嵗轮【即迟防逆伏】皆以距日之逺近而生故太阳独无也若用小均轮则太阳有二小轮其一为平高卑二为定高卑而月五星则有三小轮其一二为平高卑定高卑与太阳同其三为太隂倍离五星嵗轮与太阳异也凡此皆以齐视行之不齐有不得不然者然小轮之用不同而名亦易相乱【如月离以高卑轮为自行轮又称本轮又曰古称小轮其定高卑轮五星称小均轮月离称均轮或称又次轮至于距日而生之轮月离称次轮五星或称次轮或称年嵗轮然亦曰古称小轮】今约以三者别之一曰本轮七政之平高卑是也一曰均轮七政平高卑之轮上又有小轮以加减之为定高卑此两小轮相须为用二而一者也一曰次轮月五星距日有逺近而生异行故曰次轮而五星次轮则直称之嵗轮也 论七政两种视行【七政从天月五星又从日】 问小轮有三又或为二何也曰小轮旧只用二【一本轮一次轮】新法用三【一本轮一均轮一次轮】然而均轮者所以消息乎本轮为本轮防细之用故曰二而一者也是则轮虽有三实则两事而已何谓两曰七政皆从天以生本轮而月五星又从乎日以生次轮天西行故七政之本轮皆从天而西转其行皆向最高也【日月五星之在本轮俱向本天最高其本轮心离最高一度本轮周亦行一度似为所摄】日天东移故月五星之合望次轮皆从日而东运其行皆向日也【月五星离日若干次轮度亦行若干是为日所摄】惟本轮从天于是有最高卑之加减而其行度必始于最高【本轮行始于本天最高而均轮即始于本轮之最高卑故本轮均轮至最高卑皆无加减为起算之端】惟次轮从日于是有离日之加减而其行度必始于防日【月次轮行始于朔望星次轮始于合伏故月至朔望五星合日冲日皆无次轮加减】是故七政皆以半周天之宿度行缩厯半周天之宿度行盈厯厯宿度三百六十而本轮一周起最高终最高也【因最高有行分故视周天稍赢然大致不变月之迟疾亦然】次轮则月以厯黄道一周而又过之凡三百八十九度奇而行二周起朔望终朔望也五星嵗轮【即次轮】则土以行黄道十二度奇木以三十三度奇火以四百○八度奇金以五百七十五度奇水以一百十四度奇而皆一周起合伏终合伏也治厯者用三小轮以求七政之视行惟此二者故曰两事也【金水二星防日后皆行黄道宿一周又复过之然后再与日防】 论天行迟速之原 问天有重数则在外者周径大而其度亦大故土木之行迟在内者周径小而其度亦小故金水月之行速七政之行势略同特其度有大小而分迟速耳以是为右旋之徴不亦可乎曰此必七政另为一物以行于本天之上故可以度之大小为迟速也今七政既与天同体而非另为一物则七政之东升西没即其本天之东升西没也且使各天之行各自为政则其性岂无缓急而自外至内舒亟之次如是其有等乎盖惟七政之天虽有重数而总为一天制动之权全在动天故近动天者不得不速近地而逺动天者不得不迟固自然之理势也曰若是则周径大小可勿论矣曰在外者为动天所掣而西行速故其东移之差数迟又以其周径大而分度阔则其差又迟是故恒星六七十年而始差一度近动天也然以周径之大小准之此所差之一度以视月天将以周计矣在内者逺于动天而西行迟故其东移之差速又以其周径小而分度狭则其差又速是故月天一日东移十三四度者近地而逺动天也然以周径计之此所差之十三四度以视日天尚不能成一度矣然则周径之大小但可兼论以考其差而非所以迟速之原也左旋之説可以无疑 论中分较分 问中分较分何也曰较分者是五星在最卑【本轮】时逐度【嵗轮周】次均之增数也凡算次均皆设嵗轮心在本轮最高而逐度【嵗轮周】定其均数【或视差在轮心东为加西为减以生迟防逆防诸行】列之于表命曰次均再设心在最卑亦逐度定其均数所得必大于最高法以先所得最高时逐度之均数【即次均】减之其余为较分若曰此嵗轮上逐度视差在最卑时应多此数也所以者何视差之理逺则见小近则见大嵗轮之在最卑去地为近比在最高必大故也 然则又何以有中分曰较分者次均之较而中分者又较分之较也使歳轮心常在最高与最卑则只用次均与较分亦已足矣无如自最高至最卑中间一百八十度嵗轮皆得逓居则次均之较各异【歳轮心行于本轮离最高而下以渐近地则星在嵗轮周逐度所生之次均必皆渐大于在最高时而心离最高时时不等即次均之所増亦必不等而较分悉变】势不能一一为表故以中分括之其法以本轮之度分为主若嵗轮各度在本轮最卑时较分若干今在本轮他度则较分只应若干也故以最卑之较分命其比例为六十分【即中分之全分】而其余自离最卑一度起各有所减减至最高而无中分则亦无较分只用次均本数矣是故较分于次均恒为加而以中分求较分则于较分恒为减【表所列较分皆轮心在最卑之数各以中分乗之六十除之变为轮心未至最卑之较分视在最卑皆为小数】其比例为嵗轮心在某度之较分与在最卑之较分若中分与六十分也故曰中分者较分之较也 再论中分 问中分之率既皆以较分为六十分之比例则皆以本轮度距最卑之逺近而得中分之多寡乃五星之中分各有异率何欤曰中分之率生于距地之逺近而五星各有其本天半径之比例则其平行之距地逺近悬殊而两心差亦各不同则又有本轮半径与其本天半径之比例矣至于嵗轮之大小复参错而不齐如土木本天大而嵗轮小金星本天小而嵗轮大而火星在水星之上则火星本天大而嵗轮反大水星本天小而嵗轮反小积此数端而较分之进退纾亟攸分此五星之中分所以各一其率也要其以最卑为较分之大差当中分之六十一而已矣 论囘囘厯五星自行度 问诸家多以五星自行度为距日度然乎曰自行度生于距日逺近然非距日之度何也星在黄道有顺有逆有疾有迟其距太阳无一平行而自行度终古平行故但可谓之距合伏之行而非距日之度也此在中土旧法则为叚目其法合计前后两合伏日数以为周率周率析之为疾行迟行退行及留而不行诸叚之目疾与迟皆有顺行度数退则有逆行度数其度皆黄道上实度也回厯不然其法则以前合伏至后合伏成一小轮小轮之心行于黄道而星体所行非黄道也乃行于小轮之周耳近合伏前后行轮上半顺轮心东行而见其疾冲日前后行轮下半则逆轮心西行而见其迟留且退其实星在轮周环转自平行也故以轮周匀分三百六十度为实前合伏至后合伏日率为法除之得轮周毎日星行之平度是之谓自行度也若以距太阳言则顺轮心而见疾距日之度必少逆轮心而迟退距日之度必多安所得平行之率哉故曰自行者星距合伏之行而非距日之行也 论囘囘厯五星自行度二 曰自行度既非距日度又谓其生于距日何也曰星既在轮周行矣而轮之心实行于黄道与太阳同为右旋而有迟速当合伏时星与轮心与太阳皆同一度【星在轮之顶作直线过轮心至太阳直射地心皆在黄道上同度如月之合朔】然不过晷刻之间而巳自是以后太阳离轮心而东轮心亦随太阳而东太阳速轮心迟轮心所到必在太阳之后以迟减速而得轮心每日不及太阳之恒率是则为距日行也【即平行距日】然而轮心随太阳东行星在轮周亦向太阳而东行太阳离轮心相距一度【黄道上度】星在轮周从合伏处【轮顶】东行亦离一度【小轮上度】太阳离轮心一象限【如月上】星在轮周亦离合伏一象限乃至太阳离轮心半周与轮心冲星在轮周亦离合伏半周居轮之底复与轮心同度而冲太阳【自轮顶合伏度作线过轮心至星之体又过地心以至太阳黄道上躔度皆成一直线如月之望】再积其度太阳离轮心之冲度而东轮心亦自太阳之冲度而东然过此以徃太阳反在轮心之后假如轮心不及太阳积至三象限则太阳在轮心后只一象限【因其环行故太阳之行速在前者半周以后太阳反在轮心之后若追轮心未及者然○如月下】星在轮周亦然【自轮底行一象限则离轮顶合伏为三象限而将复及合伏尚差一象限】逮太阳离轮心之度满一全周而轮心与太阳复为同度则星在轮周亦复至合伏之度而自行一周矣【星轮心太阳三者皆复同为一直线以直射地心如月第二合朔】凡此星行轮周之度无一不与轮心距日之度相应【主日而言则为太阳离轮心之度主星而言则为轮心不及太阳之距度其义一也】故曰自行之度生于距日然是轮心距日非星距日也 论囘囘厯五星自行度三 问轮心距日与星距日何以不同乎曰轮心距日平行星距日不平行惟其不平行是与自行度之平行者判然为二故断其非距日度也惟其平行是与自行度相应故又知其生于距日也 然则自行度不得为星距日度独不得为轮心距日度乎曰轮心距日虽与自行相应能生其度然其度不同轮心是随日东行倒算其不及于日之度星在轮周环行是顺数其行过合伏之度不同一也又轮心距日是黄道度七政所同星离合伏自行是小轮周度小于黄道度又各星异率【小轮小于黄道而小轮周亦匀分三百六十度其度必小于黄道度而各星之小轮周径各异度亦从之而异】不同二也若但以自行之初与日同度自行半周毎与日冲而径以距日与自行混而为一岂不毫厘千里哉 论新图五星皆以日为心 问五星天皆以日为心然乎曰西人旧説以七政天各重相裹厥后测得金星有望之形故新图皆以日为心但上三星轮大而能包地金水轮小不能包地故有经天不经天之殊然以实数考之惟金水抱日为轮确然可信若木火土亦以日为心者乃其次轮上星行距日之迹非真形也 凡上三星合伏后必在太阳之西而晨见于是自嵗轮最逺处东行而渐向下及距日之西渐逺至一象限内外星在嵗轮行至下半为迟留之界再下而退行冲日则居嵗轮之底此合伏至冲日在日西半周也冲日以后转在日东而夕见又自轮底行而向上过迟留之界而复与日合矣此冲日至合伏在日东半周也 故嵗轮上星行高下本是在嵗轮上下而自太阳之相距观之即成大圎而为围日之形以日为心矣其理与本轮行度成不同心天者同也 但如此则上三星之圎周左旋与金水异 夫七政本轮皆行天一周而高卑之数以毕虽有最高之行所差无防故可以本轮言者亦可以不同心天言也若嵗轮则不然如土星嵗轮一周其轮心行天不过十二度奇木星则三十三度奇上下旋转止在此经度内不得另有天周之行知为距日之虚迹也 又如金星嵗轮一周其轮心平行五百七十余度则大于天周二百余度水星嵗轮一周轮心平行一百一十五度奇则居天度三之一皆不可以天周言 惟火星嵗轮之周其平行四百余度与天周差四十度数略相近故厯指竟云以太阳为心而要之总是借虚率以求真度非实义也 厯算全书卷三 [book_title]卷四 <子部,天文算法类,推步之属,历算全书> 钦定四库全书 厯算全书卷四 宣城梅文鼎撰 厯学疑问补上 论西厯源流本出中土即周髀之学 问自汉太初以来厯法七十余家屡改益精 本朝时宪厯集其大成兼采西术而斟酌尽善昭示来兹为万世不刋之典顾经生家或犹有中西同异之见何以徴信而使之勿疑曰厯以稽天有昼夜永短表景中星可攷有日月薄五星留逆伏见凌犯可騐乃实测有慿之事既有合于天即当采用又何择乎中西且吾尝徴诸古籍矣周髀算经汉赵君卿所注也其时未有言西法者【唐开元始有九执厯直至元明始有回回厯】今攷西洋厯所言寒暖五带之说与周髀七衡脗合岂非旧有其法欤且夫北极之下以半年为昼半年为夜赤道之下五谷一嵗再熟必非慿臆凿空而能为此言夫有所受之矣然而习者既希所又略读周髀者亦祗与山海经穆天子传十洲记诸书同类并观聊备奇闻存而不论已耳今有欧逻巴实测之算与之相应然后知所述周公受学商高其说亦非无本而惜其残缺不详然犹幸存梗槩足为今日之徴信岂非古圣人制作之精神有嘿为呵防者哉 论盖天与浑天同异 问西术既同周髀是盖天之学也然古厯皆用浑天浑天与盖天原为两家岂得同欤曰盖天即浑天也其云两家者传闻误耳天体浑圆故惟浑天仪为能惟肖然欲详求其测算之事必写记于平面是为盖天故浑天如塑像盖天如绘像总一天也总一周天之度也岂得有二法哉然而浑天之器浑员其度匀分其理易见而造之亦易盖天写浑度于平面则正视与斜望殊观仰测与旁闚异法度有踈宻形有垤坳非深思造微者不能明其理亦不能制其器不能尽其用是则盖天之学原即浑天而微有精麄难易无二法也夫盖天理既精深传者遂尠而或者不察但泥倚盖覆槃之语妄拟盖天之形竟非浑体天有北极无南极倚地斜转出没水中而其周不合荒诞违理宜乎扬雄蔡邕辈之辞而辟之矣盖汉承秦后书器散亡惟洛下闳始为浑天仪而他无攷据然世犹盖天之名说者承讹遂区分之为两而不知其非也载攷容成作盖天首作算数在黄帝时颛顼作浑天在后夫黄帝神灵首出又得良相如容城首皆神圣之人测天之法宜莫不备极精微颛顼盖本其意而制为浑员之器以发明之使天下共知非谓黄帝容成但知盖天不知浑天而作此以厘正之也知盖天与浑天原非两家则知西厯与古厯同出一源矣【元史载仰仪铭以盖天与安防宣夜等并称六天而殊浑于盖犹沿旧说续读姚牧庵集有所改定则已知浑盖之非二法实为先得我心详见鼎所着二仪铭注】 论中土厯法得传入西国之由 问欧罗巴在数万里外古厯法何以得流通至彼曰太史公言幽厉之时畴人子弟分散或在诸夏或在四裔盖避乱逃咎不惮逺涉殊方固有挟其书器而长征者矣【如鲁论载少师阳撃磬襄入于海鼔方叔入于河播鼗武入于汉故外域亦有律吕音乐之厯官遐遁而厯术逺亦如此尔又如言夏衰不窋失官而自窜于戎翟之间厥后公刘迁邠太王迁岐文王迁丰渐徙内地而孟子犹称文王为西夷之人夫不窋为后稷乃农官也夏之衰而遂失官窜于戎翟然则羲和之苖裔屡经夏商之丧乱而流离播迁当亦有之太史公独举幽厉盖言其甚者耳】然逺国之能言厯术者多在西域则亦有故尧典言乃命羲和钦若昊天厯象日月星辰敬授人时此天子日官在都城者盖其伯也又命其仲叔分宅四方以测二分二至之日景即测里差之法也羲仲宅嵎夷曰旸谷即今登莱海隅之地羲叔宅南交则交趾国也此东南二处皆濵大海故以为限又和叔宅朔方曰幽都今口外朔方地也地极冷冬至于此测日短之景不可更北故即以为限独和仲宅西曰昩谷但言西而不限以地者其地既无大海之阻又自东而西气略同内地无极北严凝之畏当是时唐虞之声教四讫和仲既奉帝命测验可以西则更西逺人慕德景从或有得其一言之指授一事之留传亦即有以开其知觉之路而彼中頴出之人从而拟议之以成其变化固宜有之考史志唐开元中有九执厯元世祖时有札玛鲁丹测器有西域万年厯明洪武初有玛沙伊克玛哈齐译回回厯皆西国人也而东南北诸国无闻焉可以想见其涯略矣 论周髀中即有地圆之理 问西厯以地心地面为测算根本则地形浑圆可信而周髀不言地圆恐古人犹未知也曰周髀算经虽未明言地圆而其理其算已具其中矣试略举之周髀言北极之下以春分至秋分为昼秋分至春分为夜盖惟地体浑圆故近赤道则昼夜之长短渐平近北极则昼夜长短之差渐大推而至北极之下遂能以半年为昼半年为夜矣若地为平面则南北昼夜皆同安得有长短之差随北极高下而异乎一也周髀又言日行极北北方日中南方夜半日行极东东方日中西方夜半日行极南南方日中北方夜半日行极西西方日中东方夜半盖惟地体浑圆与天体相似太阳随天左旋绕地环行各以其所到之方正照而为日中正午其对冲之方在地影最深之处而即为夜半子时矣假令地为平面东西一望皆平则日一出地而万国皆晓日一入地而八表同昏安得有时刻先后之差而且有此方日中彼为夜半者乎二也周髀又言北极之下不生万物北极左右夏有不释之氷物有朝耕暮获中衡左右冬有不死之草五谷一嵗再熟盖惟地与天同为浑圆故易地殊观而寒暑迥别北极下地即以北极为天顶而太阳周转近于地平阳光希微不能解冻万物不生矣其左右犹能生物而以春分至秋分为昼故朝耕而暮获也若中衡左右在赤道下以赤道为天顶春分时日在赤道其出正夘入正酉并同赤道正午时日在天顶其热如火即其方之夏春分以后日轨渐离赤道而北至夏至而极其出入并在正夘酉之北二十三度半有奇正午时亦离天顶北二十三度半奇其热稍减而凉气以生为此方之秋冬矣自此以后又渐向赤道行至秋分日复在赤道出入正夘酉而正过天顶一如春分热之甚亦如之则又为其方之夏矣秋分后渐离赤道而南直至冬至又离赤道南二十三度半奇而出入在正夘酉南正午亦离天顶南并二十三度半奇气复得稍凉又为秋冬是故冬有不死之草而五谷一嵗再热也又其方日轨每日左旋之圏度并与赤道平行而终嵗昼夜皆平上条言地近赤道而昼夜之差渐平以此故也赤道既在天顶则北极南极俱在地平可见然但言北极不言南极者中土九州在赤道北圣人治厯祗据所见之北极出地而精其测算即南极可以类推然又言北极下地高旁陀四隤而下即地圆之大致可见非不知地之圆也即如日月交常在朔望则日食时日月同度为月所掩赤易知之事而春秋小雅但云日有食之古圣人祗举其可见者为言皆如是也 论浑盖通宪即古盖天遗法 问盖天必自有仪器今西洋厯仍用浑仪浑象何以断其为盖天曰盖天以平写浑其器虽平其度则浑非不用浑天仪之测验也是故用浑仪以测天星畴人子弟多能之而用平仪以稽浑度非精于其理者不能也今为西学者多能制小浑仪小浑象至所浑盖通宪者则能制者尠以此故也夫浑盖平仪置北极于中心其度最宻次昼长规又次赤道规以渐而踈此其事易知又次为昼短规在赤道规外其距赤道度与昼长规等理宜収小而今为平仪所限不得不反展而大其经纬视赤道更濶以踈然以稽天度则七政之躔离可知以攷时刻则方位之加临不爽若是者何哉其立法之意置身南极以望北极故近人目者其度加寛逺人目者其度加窄视法之理宜然而分秒忽微一一与勾股割圜之切线相应非深思造微者必不能知也至于长规以外度必更寛更濶而平仪中不能容不得不割而弃之浅见者或遂疑葢天之形其周不合矣是故浑盖通宪即古盖天之遗制无疑也 论浑盖通宪即盖天遗法二 问利氏始传浑盖仪而前此如回回厯并未言及何以明其为古盖天之器曰浑盖虽利氏所然非利氏所创吾尝徴之于史矣元史载札玛鲁丹西域仪象有所谓乌蘓都尔喇卜垣者其制以铜如圆镜而可挂面刻十二辰位昼夜时刻此即浑盖之型模也又云上加铜条缀其中可以圆转铜条两端各屈其首为二窍以对望昼则视日影夜则窥星辰以定时刻以占休咎此即浑盖上所用之闚筩指尺也又言皆嵌镜片二面刻其图凡七以辨东西南北日影长短之不同星辰向背之有异故各异其图以尽天地之变此即浑盖上所嵌圆片依北极出地之图而各一其图凖天顶地平以知各方辰刻之不同与夫日出入地昼夜之长短及七政躔离所到之方位及其高度也其圆片有七而两面刻之则十四矣西洋虽不言占法然有其立象之学随地随时分十二宫与推命星家立命宫之法略同故又曰以占休咎也虽作史者未能深悉厥故而语焉不详今以浑盖徴之而一一脗合故曰浑盖虽利氏所传而非其所创也且利氏此器初不别立佳称而名之曰浑盖通宪固已明示其指矣然则何以不直言盖天曰盖天之学人屏絶之久矣骤举之必骇而不信且夫殊盖于浑乃治浑天者之沿谬而精于盖天者原视为一事未尝区而别之也夫浑天仪必设于观台必如法安置而始可用浑盖则悬而可挂轻便利于行逺为行测之所需所以逺国得存其制而流至今也 论浑盖之器与周髀同异 问浑盖通宪岂即周髀所用欤曰周髀书残缺不完不可得攷据所言天象盖笠地法覆槃又云笠以写天而其制弗详今以理揆之既地如覆槃即有圆突隆起之形则天如盖笠必为圆坳曲抱之象其制或当为半浑圆而空其中略如仰仪之制则于高明下覆之形体相似矣乃于其中按经纬度数以写周天星宿皆宛转而曲肖矣是则必以北极为中心赤道为边际其赤道以外渐敛渐窄必别有法以相佐或亦是半浑圆内空之形而仍以赤道为边其赤道以南星宿并取其距赤道逺近求其经纬度数而图之至于南距赤道甚逺不可见星之处亦遂可空之不用于是两器相合即周天可见之星象俱全备而无遗矣以故不知者因其极南无星遂妄谓其周不合而无南极也 又或写天之笠竟展而平而以北极为心赤道为边用割圆切线之法以攷其经纬度数则周天之星象可一一写其形容其赤道南之星亦展而平而以赤道为边查星距赤道起数亦用切线度定其经纬则近赤道者距踈离赤道向南者渐宻而一一惟肖其不见之星亦遂可空之是虽不言南极而南极已在其中今西洋所作星图自赤道中分为两即此制也所异者西洋人浮海来賔行赤道以南之海道得见南极左右之星而补成南极星图与古人但图可见之星者不同然其理则一是故西洋分画星图亦即古盖天之遗法也 周髀云笠以写天当不出坳平二制至若浑盖之器乃能于赤道外展濶平边以得其经纬遂能依各方之北极出地度而求其天顶所在及地平边际即昼夜长短之极差可见于是地平之经纬与天度之经纬相与错综参伍而如指诸掌非容成首诸圣人不能作也而于周髀之所言一一相应然则即断其为周髀盖天之器亦无不可矣夫法传而久岂无微有损益要皆踵事而增其根本固不殊也利氏名之曰浑盖通宪盖其人强记博闻故有以得其源流而不敢没其实亦足以徴其人之贤矣 论简平仪亦盖天法而八线割圆亦古所有 问西法有简平仪亦以平测浑之器岂亦与周髀相应欤曰凡测天之器圆者必为浑平者即为盖【唐一行以平图写星象亦谓之盖天所异者只用平度不曽以切线分浑球上之经纬踈宻耳】简平仪以平圆测浑圆是亦盖天中之一器也今攷其法亦可以知一嵗中日道发南敛北之行可以知寒暑进退之节可以知昼夜永短之故可以用太阳高度测各地北极之出地即可用北极出地求各地逐日太阳之高度推极其变而置赤道为天顶即知其地方之一年两度寒暑而三百六旬中昼夜皆平若北极为天顶即知其地之能以半年为昼半年为夜而物有朝生暮获凡周髀中所言皆可知之故曰亦盖天中一器也但周髀云笠以写天似与浑盖较为亲切耳夫盖天以平写浑必将以浑圆之度按而平之浑盖之器如剖浑球而空其中乃仰置几案以通明如玻瓈之片平掩其口则圆球内面之经纬度分映浮平面一一可数而变为平矣然其度必中宻而外踈故用切线【此如人在天中则浑天之内面乃正视也故寘北极于中心】简平之器则如浑球嵌于立屏之内仅可见其半球而以玻瓈片悬于屏风前正切其球四面距屏风皆如球半径而无欹侧则球面之经纬度分皆可写记而抑突为平矣然其度必中濶而旁促故用正【此如置身天外以测浑天之外面故以极至交圏为边两极皆安于外周以考其出入地之度乃旁视也】由是言之浑盖与简平异制而并得为盖天遗制审矣而一则用切线一则用正非是则不能成器矣因是而知三角八线之法并皆古人所有而西人能用之非其所创也伏读 御制三角形论谓众角辏心以算弧度必古厯所有而流传西土此反失传彼则守之不失且踵事加详至哉 圣人之言可以为治厯之金科玉律矣 论周髀所之说必在唐虞以前 问周髀言周公受学于商高商高之学何所受之曰必在唐虞以前何以知之盖周髀所言东方日中西方夜半云云者皆相距六时其相去之地皆一百八十度【地与天应其周度皆三百六十则其相对必一百八十】此东西差之极大者也细攷之则日在极东而东方为日中午时则其地在极南者必见日初出地而为卯时在极北者必见日初入地而 为酉时故又云此四方者昼夜易处加四时相及【自南方卯至东方午为四时自东方日中午至北方酉亦四时故每加四时则相及矣若以度计之实相距九十】又细分之则东西相距三十度必早晚差一时【如日在极南为午时其西距三十度之地必见其为已时而其东距三十度之地必见为未时其余地准此推之并同】相距十五度必相差四刻尧分命羲仲寅賔出日和仲寅饯内日者测此东西里差也【寅賔寅饯互文见意非羲仲但朝测和仲但暮测也】又周髀所言北极下半年为昼中衡下五谷一嵗再熟云云者其距纬皆相去九十度乃南北差之极大者也细考之北极高一度则地面差数百十里【屡代所测微有不同今定为二百五十里】而寒暑宻移昼夜之长短各异和叔羲叔分处南北以测此南北里差也故曰此法之传必在唐虞以前也夫东西差测之稍难若南北之永短因太阳之高下而变日轨高下又依北极之高下而殊经商逺游之辈稍知厯象即能觉之羲和二叔奉帝尧之命考测日景一往极北一往极南相距七八千里之逺其逐地之极星高下昼夜永短身所经厯乃瞢然不知何以为羲和也哉是知地面之非平而永短以南北而差早晚以东西而异必皆羲和所悉知而敬授人时祗据内地幅员立为常法其推测歩算必有专书而亡于秦焰周髀其千百中之十一耳又何疑焉 论地实圆体而有背面 问地体浑圆既无可疑然岂无背面曰中土圣人所产即其面也何以言之五伦之教天所叙也自黄帝尧舜以来世有升降而司徒之五教人人与知若西方之佛教及天教虽其所言心性之理极其精微救度之愿极其广大而于君臣父子之大伦反轻此一徴也语言惟中土为顺若佛经语皆倒如云到彼岸则必云彼岸到之类欧逻巴虽与五印度等国不同语言而其字之倒用亦同日本国卖酒招牌必云酒卖彼人亦读中土书则皆于句中用笔挑剔作记而倒读之北边塞外及南徼诸国大略皆倒用其字此又一徴也往闻西士之言谓行数万里来賔所厯之国多矣其土地幅员亦有大于中土者若其衣冠文物则未有过焉此又一徴也是知地体浑圆而中土为其面故笃生神圣帝王以继天建极垂世立教亦如人身之有面为一身之精神所聚五藏之精并开窍于五官此亦自然之理也 论盖天之学流西土不止欧逻巴 问佛经亦有四大州之说与周髀同乎曰佛书言须弥山为天地之中日月星辰绕之环转西牛贺州南瞻部州东胜神州北具卢州居其四面此则亦以日所到之方为正中而日环行不入地下与周髀所言略同然佛经所言则其下为华藏海而世界生其中须弥之顶为诸天而通明故夜能见星此则不知有南北二极而谓地起海中上连天顶始如圆墖圆柱之形其说难通而彼且谓天外有天令人莫可穷诘故婆罗门等【婆罗门即回回】皆为所笼络事之唯谨【唐书载回纥诸国多事佛回纥即回回也】然回回国人能从事厯法渐以知其说之不足慿故遂自立门庭别立清真之教西洋人初亦同回回事佛【唐有波斯国人在此立大秦寺今所景教碑者其人皆自署曰僧】回回既与佛教分而西洋人精于算复从回厯加精故又别立耶苏之教以别于回回【观今天教中七日一斋等事并略同回教其厯法中小轮心等算法亦出于回厯】要皆盖天周髀之学流传西土而得之有全有缺治之者有精有粗然其根则一也 论逺国所用正朔不同之故 问回厯及西洋厯既皆本于盖天何以二教所颁斋日其每年正朔如是不同曰天方国以十二个月为年【即回回国】欧逻巴以太阳过宫为年月依嵗差而变此皆自信其厯法之善有以接古盖天之道又见秦人蔑弃古三正而以己意立十月为嵗首【今西南诸国犹有用秦朔者】故遂亦别立法程以新人耳目夸示四隣【今海外诸国多有以十二个月为年遵回厯也】盖回国以厯法测验疑佛说之非故谓天有主宰无影无形不宜以降生之人为主其说近正【所异于古圣人者其所立拜念之规耳】厥后欧逻巴又于回厯研精故又自立教典奉耶苏为天主以别于回回然所称一体三身降生诸灵怪反又近于佛教而大声辟佛动则云中国人错了夫中土人伦之教本于帝王虽间有事佛者不过千百中之一二又何错之云 今但攷其厯法则回回泰西大同小异而皆本于盖天然惟利氏初入欲人之从其说故多方阐明其立法之意而于浑盖通宪直露浑盖之名为今日所徴信盖彼中之英贤也厥后厯书全部又得徐文定及此地诸文人为之广其畨译为厯家所取资实有功于厯学其他可以勿论若回回厯虽亦有所持之圆地球及平面似浑盖之器而若露若藏不宣其义洪武时吴伯宗李翀奉诏翻译亦但纪其数不详厥防至数之后虽其本科亦莫稽测算之根所云乌蘓都尔喇卜垣之器竟无言及之者盖失已久殊可惜耳 尤可深惜者回回泰西之厯既皆本于盖天而其所用正朔乃各自翻新出奇欲以自异其实皆非夫古者帝王钦若昊天顺春夏秋冬之序以敬授人时出于自然何其正大何其易简万世所不能易也顾乃恃其巧算私立正朔以变乱之亦见其惑矣徐文定公之译厯书也云镕西洋之巧算入大统之型模非独以尊大统也揆之事理固有不得不然者尔 测算以求天验不难兼西术之长以资推歩颁朔以授人时自当遵古圣之规以经久逺虚心以折其衷博考以求其当有志厯学者尚其念诸【余详后论】 厯算全书卷四 [book_title]卷五 钦定四库全书 厯算全书卷五 宣城梅文鼎撰 厯学疑问补下 论太阳过宫 问旧厯太阳过宫与中气不同今何以复合为一曰新厯之测算精矣然其中不无可商当俟后来详定者则此其一端也何则天上有十二宫宫各三十度每嵗太阳以一中气一节气共行三十度【如冬至小寒共行三十度大寒立春又共行三十度其余并同】满二十四气则十二宫行一周故厯家恒言太阳一嵗周天也然而实考其度则一嵗日躔所行必稍有不足虽其所欠甚微【约其差不过百分度之一有半】积至年深遂差多度【六七十年差一度六七百年即差十度】是为嵗差厯家所以有天周嵗周之名【天上星辰匀分十二宫共三百六十度是为天周每嵗太阳十二中气共行三百六十度防弱是为嵗周】汉人未知嵗差误合为一故即以冬至日交星纪而定之于牵牛逮晋虞喜等始觉之五代宋何承天祖冲之隋刘焯等言之益详顾治厯者株守成説不敢辄用嵗差也至唐初傅仁均造戊寅元厯始用嵗差而朝论多不以为然【亦如今人之不信西法人情狃于习见大扺皆然】故李淳风麟德厯复去嵗差不用直至宗开元某年僧一行作大衍厯乃始博徴广证以大畅厥防于是分天自为天【即周天十二次宫度其度终古不变】嵗自为嵗【即周嵗十二中气日躔所行天度其度嵗嵗微移】厯代遵用【所定嵗差年数微有不同而大致无异】元世祖时用授时厯郭守敬测定六十六年有八月而差一度回回泰西差法略同【今定为七十年差一度数亦非逺】故冬至日一嵗日躔之度已周尚不能复于星纪之元度必再行若干日时而至星纪【十二中气皆同一理】所以太阳过宫与中气必不同日其法原无错误其理亦甚易知徐李诸公深于厯术岂反不明斯事乃复合为一真不可解推原厥故盖译厯书时误仍回回厯太阳年之十二月名耳 问回回厯亦知嵗差何以误用宫名为月名曰回回厯既以十二个月为太隂年而用之纪嵗不用闰月然如是则四时之寒燠温凉错乱无纪因别立太阳年以周嵗日躔匀分三百六十度又匀分为十二月以为耕敛之节而起算春分是亦事势之不得不然【尧典寅賔出日始于仲春即此一事亦足徴西厯之本于羲和】但彼以春分为太阳年之第一月第一日遂不得复用古人分至启闭之法及春夏秋冬正名【古者以立春立夏立秋立冬春分秋分冬至夏至为八节其四立并在四孟月之首以为四时之节谓之启闭二分二至并在四仲月之中居春夏秋冬各九十一日之半皆自然之序不可移易今回厯之太阳年既以春分为嵗首则是以仲春之后半月为正旦而割其前半个月以益孟春共四十五日奇遂一并移之于嵗终而孟春之前半改为十一月之后半孟春之后半合仲春之前半共三十日改为十二月即春夏秋冬之四时及分至启闭之八节孟仲季之月名无一与之相应名不正则言不顺遂不复可得而用矣】故遂借白羊等十二宫以名其太阳年之月彼非不知天度有嵗差白羊不能板定于春分然以其时春分正在白羊姑借此名之以纪月数【即此而知回厯初起时其年代去今非逺】欧逻巴厯法因回厯而加精大致并同回厯故遂亦因之耳徐文定公译厯书谓镕西洋之精算入大统之型模则此处宜为改定使天自为天嵗自为嵗则嵗差之理明而天上星辰宫度各正其位矣【如昼夜平即为二分昼极长即为夏至不必问其日躔是何宫度是之谓嵗自为嵗也必太阳行至降娄始命为日躔降娄之次大阳行至鹑首始命为日躔鹑首之次不必问其为春分后几日夏至后几日是之谓天自为天也】顾乃因仍回厯之宫名而以中气日即为交宫之日则嵗周与天周复混而为一于是嵗差之理不明【如星纪之次常有定度而冬至之日度渐移是生嵗差若冬至日即躔星纪嵗嵗相同安得复有嵗差】而天上十二次宫度名实俱乱【天上十二宫各有定星定度若随节气移动则名实俱左后篇详之】是故厯法至今日推步之法已极详明而不无有待商酌以求尽善者此其一端也问者曰厯所难者推步耳若此等处改之易易【但于各中气后查太阳实躔某宫之度即过宫真日】但厯书中所作诸表多用白羊金牛等宫名以为别识今欲通身改换岂不甚难曰否否厯书诸表虽以白羊金牛等为题而其中之进退消长并从节气起算今但将宫名改为节气即诸表可用不必改造有何难哉【如厯从白羊起者即改白羊初度为春分初度表从磨羯起者即改磨羯初度为冬至初度厯书诸表依旧可用但正其名不改其数更无烦于推算】 论周天十二宫并以星象得名不可移动 问天上十二宫亦人所名今随中气而移亦何不可之有曰十二宫名虽人所为然其来久矣今攷宫名皆依天上星宿而定非漫说者如南方七宿为朱鸟之象【史记天官书栁为鸟注注即咮咮者朱鸟之喙也七星颈为员官颈朱鸟颈也员官咙防也张为素素即嗉鸟受食之处也翼为羽翮朱鸟之翼】故名其宫曰鹑首鹑火鹑尾【鹑即朱鸟乃凤也】东方七宿为苍龙【天官书东宫苍龙房心心为明堂今按角二星象角故一名龙角氐房心象龙身心即其当心之处故心为明堂尾宿即龙之尾】故其宫曰夀星【封禅书武帝诏天下尊祀灵星正义灵星即龙星也张晏曰龙星左角曰天田则农祥也见而祀之】曰大火【心为大火】曰析木【一名析木之津以尾箕近天河也】北方七宿为武【天官书北宫武】其宫曰星纪【古以斗牛为列宿之首故星自此纪也】曰枵【枵者虚也即虚危也又象龟蛇为武也】曰娵訾【一名娵訾之口以室壁二宿各二星两两相对而形正方故象口也】西方七宿为白虎【天官书奎曰封豕参为白虎三星直者是为衡其外四星左右肩股也小三星隅置曰觜觽为虎首】其宫曰降娄【以娄宿得名也】曰大梁曰实沈由是以观十二宫名皆依星象而取非漫设也尧典日中星鸟以其时春分昏刻朱鸟七宿正在南方午地也日永星火以其时夏至初昏大火宫在正午也【火即心宿】宵中星虚以其时秋分昏中者枵宫也即虚危也日短星昴以其时冬至昏中者昴宿也即大梁宫也厯家以嵗差攷之尧甲辰至今已四千余嵗嵗差之度已及二宫【以西率七十年差一度约之凡差六十余度】然而天上二十八舎之星宿未尝变动故其十二宫亦终古不变也若夫二十四节气太阳躔度尽依嵗差之度而移则嵗嵗不同七十年即差一度【亦据今西术推之】安得以十二中气即过宫乎试以近事徴之元世祖至元十七年辛巳冬至度在箕十度至今康熙五十八年己亥冬至在箕三度其差盖已将七度而即以箕三度交星纪宫则是至元辛巳之冬至宿【箕十度】已改为星纪宫之七度再一二百年则今己亥之冬至宿【箕三度】为星纪宫之初度者又即为星纪宫之第三度而尾宿且浸入星纪矣积而久之必将析木之宫【尾箕】尽变为星纪大火之宫【氏房心】尽变为析木而十二宫之星宿皆差一宫【凖上论之角亢必为大火翼轸必为夀星柳星张必为鹑尾井鬼必为鹑火而觜参为鹑首胃昴毕为实沈奎娄为大梁而娵訾为降娄虚危为娵訾斗牛为枵二十八宿皆差一宫】即十二宫之名与其宿一一相左又安用此名乎再积而久之至数千年后东宫苍龙七宿悉变武【嵗差至九十度时角亢氐尾心房箕必尽变为星纪枵娵訾并仿此】南宫朱鸟七宿反为苍龙西宫白虎七宿反为朱鸟北宫武七宿反为白虎国家颁厯授时以钦若昊天而使天上宿度宫名颠倒错乱如此其可以不亟为厘定乎 又试以西术之十二宫言之夫西洋分黄道上星为十二象虽与羲和之旧不同然亦皆依星象而名非漫设者如彼以积尸气为巨蠏第一星盖因鬼宿四星而中央白气有似蠏筐也所云天蝎者则以尾宿九星卷而曲其末二星相并如蝎尾之有岐也所云人马者谓其所图星象类人骑马上之形也其余如宝瓶如双鱼如白羊如金牛如隂阳如狮子如双女如天秤以彼之星图观之皆依稀彷佛有相似之象故因象立名今若因节气而每嵗移其宫度积而久之宫名与星象相离俱非其旧而名实尽淆矣 又按西法言嵗差谓是黄道东行未尝不是如今日鬼宿已全入大暑日躔之东在中法嵗差则是大暑日躔退回鬼宿之西也在西法则是鬼宿随黄道东行而行过大暑日躔之东其理原非有二尾宿之行入小雪日躔东亦然夫既鬼宿已行过大暑东而犹以大暑日交鹑火之次则不得复为巨蠏之星而变为师子矣尾宿已行过小雪后而犹以小雪日交析木之次则尾宿不得为天蝎而变为人马宫星矣即询之西来知厯之人有不哑然失笑者乎 论西法恒星嵗即西月日亦即其斋日并以太阳过宫为用而不与中气同日 问西法以太阳防恒星为嵗谓之恒星年恒星既随黄道东行则其恒星年所分宫度亦必不能常与中气同日厯书何以不用曰恒星年即其所颁斋日也其法以日躔斗四度为正月朔故曰以太阳防恒星为嵗也其斗四度盖即其所定磨羯宫之初度也【在今时冬至后十二日】自此日躔行满三十度即为第二月交宝瓶宫【余月并同皆以日躔行满三十度交一宫即又为一月而不论节气】然其十二月之日数各各不同者以黄道上有最高卑差而日躔之行度有加减也【如磨羯宫日躔最卑行速故二十八日而行一宫即成一月若巨蠏宫日躔最高行迟故三十一日而行一宫始成一月其余宫度各以其或近最卑或近最高迟速之行不同故日数皆不拘三十日并以日躔交宫为月不论节气】是则其所用各月之第一日即太阳交宫之日原不与中气同日而且嵗嵗微差至六七十年恒星东行一度即其各宫并东行一度而各月之初日在各中气后若干日者又増一日矣【如今以冬至后十二日为嵗首至嵗差一度时必在冬至后十三日余尽然】此即授时厯中气后几日交宫之法乃嵗差之理本自分晓而厯书中不甚发挥斯事者亦有故焉一则以月之为言本从太隂得名故必晦朔望周而后谓之月今反以太阳所躔之宫度为月而置朔望不用是名为月而实非月大骇听闻一也又其第一月既非夏正孟春亦非周正仲冬又不用冬至日起算非厯学履端于始之义事体难行二也又其所用斋日即彼国所颁行之正朔欧逻巴人私奉本国之正朔宜也中土之从其教者亦皆私奉欧逻之正朔谓国典何故遂隠而不宣三也【初造厯书事事阐发以冀人之信从惟此斋日但每嵗单伊教不笔于书】然厯书所引彼中之旧测每称西月日者皆恒星年也其法并同斋日皆依恒星东行以日躔交磨羯宫为嵗旦而非与冬至中气同日也此尤为太阳过宫非中气之一大证据矣 或曰厯书所引旧测多在千余年以前然则西月日之兴所从来久矣曰殆非也唐始有九执厯元始有回回厯欧逻巴又从回厯加精必在回厯之后彼见回回厯之太隂年太阳年能变古法以矜奇创故复变此西月日立恒星年以胜之若其所引旧测盖皆以新法追改其月日耳 论恒气定气 问旧法节气之日数皆平分今则有长短何也曰节气日数平分者古法谓之恒气【以嵗周三百六十五日二十四刻奇平分为二十四气各得一十五日二十一刻八十四分奇】其日数有多寡者谓之定气【冬至前后有十四日奇为一气夏至前后有十六日为一气其余节气各各不同并以日行盈厯而其日数减行缩厯而其数増】二者之算古厯皆有之然各有所用唐一行大衍厯议曰以恒气注厯以定气算日月交食是则旧法原知有定气但不以之注厯耳译西法者未加详考辄谓旧法春秋二分并差两日则厚诬古人矣夫授时厯所注二分日各距二至九十一日奇乃恒气也【厯经厯草皆明言恒气】其所注昼夜各五十刻者必在春分前两日奇及秋分后两日奇则定气也定气二分与恒气二分原相差两日授时既遵大衍厯议以恒气二分注厯不得复用定气故但于昼夜平分之日纪其刻数则定气可以互见非不知也且授时果不知有定气平分之日又何以能知其日之为昼夜平分乎夫不知定气是不知太阳之有盈缩也又何以能算交食何以能算定朔乎【经朔犹恒气定朔犹定气望与上下亦然】夫西法以最高卑防盈缩其理原精初不必为此过当之言良由译书者并从西法入手遂无暇参稽古厯之原流而其时亦未有能真知授时立法之意者为之援据古义以相与虚公论定故遂有此等偏说以来后人之疑议不可不知也 其所以为此说者无非欲以定气注厯使春秋二分各居昼夜平分之日以见授时古法之差两日以自显其长殊不知授时是用恒气原未尝不知定气不得为差而西法之长于授时者亦不在此以定气注厯不足为奇而徒失古人置闰之法欲以自暴其长反见短矣故此处宜酌改也后条详之 再论恒气定气 问授时既知有定气何为不以注厯曰古者注厯只用恒气为置闰地也春秋传曰先王之正时也履端于始举正于中归邪于终【邪与余同谓余分也】履端于始序则不愆举正于中民则不惑归邪于终事则不悖盖谓推步者必以十一月朔日冬至为起算之端故曰履端于始而序不愆也又十二月之中气必在其月如月内有冬至斯为仲冬十一月月内有雨水斯为孟春正月月内有春分斯为仲春二月余月并同皆以本月之中气正在本月三十日之中而后可名之为此月故曰举正于中民则不惑也若一月之内只有一节气而无中气则不能名之为何月斯则余分之所积而为闰月矣闰即余也前此余分累积归于此月而成闰月有此闰月以为余分之所归则不致春之月入于夏且不致今冬之月入于明春故曰归邪于终事则不悖也然惟以恒气注厯则置闰之理易明何则恒气之日数皆平分故其每月之内各有一节气一中气【假如冬至在十一月朔则必有小寒在其月望后若冬至在十一月晦则必冇大雪节气在其月望前余月并然】此两气策之日合之共三十日四十三刻奇以较每月常数三十日多四十三刻奇谓之气盈又太隂自合朔至第二合朔实止二十九日五十三刻奇以较每月三十日又少四十六刻奇谓之朔虚合气盈朔虚计之共余九十刻奇谓之月闰乃每月朔策与两气策相较之差也【假如十一月经朔与冬至同时刻则大寒中气必在十二月经朔后九十刻而雨水中气必在次年正月经朔后一日又八十刻奇其余月并准此求之】积此月闰至三十三个月间【即二年零九个月】其余分必满月策而生闰月矣闰月之法其前月中气必在其晦后月中气必在其朔则闰月只有一节气而无中气然后名之为闰月【假如闰十一月则冬至必在十一月之晦大寒必在十二月之朔而闰月只有小寒节气更无中气则不可谓之为十一月亦不可谓之为十二月即不得不名之为闰月矣】斯乃自然而然天造地设无可疑惑者也一年十二个月俱有两节气惟此一个月只一节气望而知其为闰月今以定气注厯则节气之日数多寡不齐故遂有一月内三节气之时又或有原非闰月而一月内反只有一中气之时其所置闰月虽亦以余分所积而置闰之理不明民乃惑矣然非西法之咎乃译书者之踈略耳何则西法原只有闰日而无闰月其仍用闰月者遵旧法也亦徐文定公所谓镕西洋之巧算入大统之型模也按尧典云以闰月定四时成嵗乃帝尧所以命羲和万世不刋之典也今既遵尧典而用闰月即当遵用其置闰之法而乃不用恒气用定气以滋人惑亦昧于先王正时之理矣是故测算虽精而有当酌改者此亦一端也 今但依古法以恒气注厯亦仍用西法最高卑之差以分昼夜长短进退之序而分注于定气日之下即置闰之理昭然众着而定气之用亦并存而不废矣 又按恒气在西法为太阳本天之平行定气在西法为黄道上视行平行度与视行度之积差有二度半弱西法与古法略同所异者最高冲有行分耳古法恒气注厯即是用太阳本天平行度数分节气 论七政之行并有周有转有交 问月五星之行并有周天有盈缩迟疾有出入黄道之交防共三事也太阳亦然乎曰并同也太阳终古行黄道则无出入黄道之交然而黄道出入于赤道亦可名交是故春秋二分即其交亦如月离之有正交中交也因此而日躔有南陆北陆之行古者谓之发敛【行南陆为发行北陆为敛并以其离北极之逺近言之】于是而四时之寒燠以分昼夜刻之永短有序皆交道之所生以成嵗周是故嵗周者即太阳之交道也与月离之交终同也然以嵗差之故【西法谓之黄道东行】故每嵗三百六十五日二十四刻奇【此以授时古率言之】已满嵗周矣又必加一刻有半【亦依古率约之】始能复躔冬至元度【假如本年冬至日躔箕宿三度八十分次年冬至必在箕宿三度七十分奇是嵗序已周而元度未复故必于三百六十五日二十四刻奇之外复加一刻有半始能复躔于箕三度八十分】是为太阳之周天与月行之周天同也月行周天与交终原非一事是故太阳之周天与嵗周原为两事也然太阳之行有半年盈厯半年缩厯即恒气定气之所由分【古法起二至西法起最高冲尤为亲切】亦如月离之转终是又为一事合之前两者【嵗周与周天】共为三事乃七政之所同也 按月离交终以二十七日二十一刻奇而隂厯阳厯之度一周在月周天前以较周天度为有欠度也转终以二十七日五十五刻奇而迟厯疾厯之度一周在月周天后以较周天度为有余度也月周天之日数在二者之间亦二十七日又若干刻而周虽同大余不同小余当其起算之初所差不过数度【如交终与转终相差三十四刻奇即其差度为四五度】积至一年即差多度【太隂每年行天十三周半即相差六十余度】故其差易见日躔嵗周以二十四节气一周为限因有恒星东行之嵗差故其度在周天前以较周天度为有欠分也【约为七十分度之一】日躔盈缩以盈初缩末缩初盈末一周为限因最高有行分故其度在周天后以较周天度为有余分也【亦约为七十分度之一】以一嵗言之三者并同大余即小余亦不甚逺【嵗周三百六十五日二十四刻奇増一刻半即周天又増一刻半即盈缩厯周但差刻不差时】积其差至七十年即各差一度【嵗周不及周天七十年差一度即恒星东行之嵗差而盈缩厯至七十年又过于周天一度即最高之行于是嵗周与盈缩厯周共相差二度并至七十年而后知之也】故其差难见【七十年只差一度故难见也】然虽难见其理则同【以周天之度为主则嵗周之差度退行亦如太隂交终差度之毎交逆退也而盈缩入厯之差度于周天为顺行亦如太隂之转终差度毎转顺行也而周天度则常不动】但以太隂之交转周比例之则判然三事不相凌杂矣 问厯法中所设交差转差即此事乎曰亦微有不同盖交差转差是以交终转终与朔策相较【或言其日或言其度并同】兹所论者是以交终转终与周天相较故其数不同也其数不同而厯法中未言者何也縁厯家所言在交食故于定朔言之綦详而月之周天反略惟陈星川【壤】袁了凡【黄】所撰厯法新书明立太隂周天日数谓之月周与交终转终并列为三实有禆于厯学而人或未知故特着之 又徴之五星亦皆有周天有厯周【即盈缩如月之入转】有正交中交是故此三事者日月五星之所同也知斯三者于厯学思过半矣【外此则月有朔望五星有叚目并以距日之逺近而生故大阳所与月五星同者惟此三事】 论月建非专言斗柄 问行夏之时谓以斗柄初昏建寅之月为嵗首议者以冬至既有嵗差则斗柄亦从之改度今时正月不当仍为建寅其说然乎曰不然也孟春正月自是建寅非闗斗柄其以初昏斗柄建寅者注释家未深攷也何则自大挠作甲子以十日为天干【自甲至癸】十二子为地支【自子至亥】天道圆故以甲乙居东丙丁居南庚辛居西壬癸居北戊巳居中参同契所谓青赤白黒各居一方皆禀中央戊巳之功也十干以配五行圆转周流故曰天干也地道方故以寅夘辰列东巳午未列南申酉戍列西亥子丑列北易大传所谓帝出乎震齐乎防相见乎离致役乎坤说言乎兊战乎干劳乎坎成言乎艮自东而南而西而北其道左旋周而复始也是十二支以配四时十二月静而有常故曰地支也天干与地支相加成六十甲子以纪嵗纪日纪时而皆凖于月以嵗有十二月也此乃自然而然之序不可増减不可动移是故孟春自是寅月何尝以斗柄指寅而后谓之寅月哉如必以斗柄指寅而谓之寅月则亦有寅年寅月寅时岂亦以斗柄指寅而后得以谓之寅乎是故尧典命羲仲宅嵎夷平秩东作以殷仲春次命羲叔宅南交平秩南讹以正仲夏次命和仲宅西平秩西成以殷仲秋次命和叔宅朔方平在朔易以正仲冬此四时分配四方而以春为嵗首之证也夫既有四仲月以居夘午酉子之四正则自各有孟月季月以居四隅仲春既正东为夘月其孟春必在东之北而为寅月何必待斗柄指寅乎故日中星鸟日永星火宵中星虚日短星昴并祗以昼夜刻之永短为慿以昏中之星为断未尝一言及于斗柄也又攷孔子去尧时已及千五百嵗嵗差之度已二十余度若尧时斗柄指寅孔子时必在寅前二十度而指丑矣岂待今日而后知乎然孔子但言行夏之时盖以孟春为嵗首于时为正非以斗柄指寅而谓之寅月也又攷嵗差之法古虽未言然而月令昏中之星已不同于尧典则实测当时之星度也然尧典祗举昏中星而月令兼言旦中又举其日躔所在又于尧典四仲月之外兼举十二月而备言之可谓详矣然未尝一语言斗杓指寅为孟春 又攷史记律书以十律配十二月之所建地支而疏其义兼八风二十八舎以为之说而并不言斗建惟天官书略言之其言曰杓擕龙角衡殷南斗魁枕参首用昏建者杓夜半建者衡平旦建者魁是则衡亦可言建魁亦可言建而非仅斗杓夜半亦有建平旦亦有建而非止初昏其言甚圆以是而知正月之为寅二月之为卯皆一定不可移而斗之星直之即谓建固非以初昏斗柄所指而命之为何月也然则谓行夏之时是以斗柄建寅之月为嵗首者盖注释家所据一家之说而未详厥故也今乃遂据其说而欲改正月之建寅可乎不可乎 再论斗建 问说者又以各月斗柄皆指其辰惟闰月则斗柄指两辰之间由今以观其说亦非欤曰非也周天之度以十二分之各得三十度奇【在西法为三十度】凡各月中气皆在其三十度之中半各月节气皆居其三十度之首尾今依其说斗柄所指各在其月之辰则交节气日斗柄所指必在两辰之间矣【假如立春为正月节则立春前一日斗柄所指在丑立春后一日斗柄指寅而立春本日斗柄所指必在丑与寅之间余月皆然】十二节气日皆指两辰之间又何以别其为闰月乎若夫闰月则只有节气无中气其节气之日固指两辰之间矣然惟此一日而已其前半月后半月并非两辰之间也【假如闰正月则雨水中气在正月晦春分中气在二月朔而闰月只有惊蛰节在月望则其前半月必指寅后半月必指卯惟惊蛰日指寅与卯之交界缝中可谓之两辰间闰在余月亦然】地盘周围分为十二辰首尾鳞次如环无端又何处设此三十度于两辰间以为闰月三十日之所指乎凡若此等习说并由未经实测而但知斗杓所指为月建遂岐中生岐成此似是而非之解天下事每壊于一知半解之人往往然也 又按斗柄之星距北极只二十余度必以北极为天顶而后可以定其所指之方今中土所处在斗杓之南仰而观之斗杓与辰极并在天顶之北其斗杓所指之方位原难清楚故古人祗言中星不言斗杓盖以此也【如淮南子等书言招揺东指而天下皆春不过大槩言之原非以此定月】 又按言营室之中土功其始火之初见期于司里又言水昏正而栽日至而毕诗亦言定之方中作于楚宫又言七月流火九月授衣古之人以星象授人时如此者不一而足也若以嵗差攷之则于今日并相差一二旬矣然而当其时各据其时之星象为之着令所以使民易知也而终未有言斗杓指何方而作何事者则以其方位之难定也十二月建之非闗斗柄明矣是故斗柄虽因嵗差而所指不同正月之建寅不可易也 论古颁朔 问论语子贡欲去告朔之饩羊孔子不然其说曰我爱其礼不知周制颁厯其式如何曰颁朔大典也盖王政在其中矣古者天子常以冬月颁来嵗十二月之朔于诸侯诸侯受而藏诸祖庙月朔则以特羊告庙请而行之如是其隆重者何也盖既曰请而行之则每月内各有当行之政令颁于天子而诸侯奉行惟谨焉故告朔之后即有视朔听朔之礼所以申命百官有司以及黎庶相与恪遵以奉一王之大法此之谓奉正朔也是故大之有朝觐防同之期有隣国聘问之节有天子巡狩朝于方岳之时【此等大礼皆以年计而必冇定期如虞书东巡狩必于仲春南巡狩必于仲夏之类】其于宗庙也有禴祠烝尝四时之祭有畊籍田夫人亲蚕以预备粢盛衣服之需其于羣神也有山川社稷祈谷报嵗八蜡五祀之典其于黉序也有上丁释菜冬夏诗书春秋羽籥之制其于农事也有田畯劝农播种収获沟洫隄防筑场纳稼之务有饮射读法遒人徇铎之事其于军政也有搜苖狝狩振旅治兵之政其于土功也有公旬三日之限其于刑罚也有宥过释滞折狱致刑之月又如藏氷用氷出火内火仲夏斩阳木仲冬斩隂木獭祭鱼然后渔人入泽梁豺祭兽然后田猎之类凡若此者皆顺四时之序以为之典章先王之所以奉若天道也而一代之典制既藏之太府恪守无斁矣又毎嵗颁示诸侯以申命之诸侯又于每月之朔告于祖庙请而奉行之天子本天以出治无一事敢违天时诸侯奉天子以治其国无一事不遵王命以上顺天时唐虞三代所以国无异俗家无异教道德一而风俗同盖以此也故曰颁朔告朔实为大典而王政因之以行也 ✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜未完待续>>>完整版请登录大玄妙门网✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜