[book_name]数度衍 [book_author]方中通 [book_date]清代 [book_copyright]玄之又玄 謂之大玄=學海無涯君是岸=書山絕頂吾为峰=大玄古籍書店獨家出版 [book_type]天文地理,数学,完结 [book_length]208770 [book_dec]中国清代数学书。方中通撰,共24卷,附录一卷。成稿于顺治辛丑(1661),但到康熙丁卯(1687)才刊刻于广东思州。全书二十三卷,分订八册。大致内容如下:卷首:数原、律衍、几何约、重学解;卷一:珠算;卷二、三:笔算;卷四:筹算;卷五:尺算;卷六至卷八:勾股章;卷九至卷十四:少广章;卷十五:方旧章;卷十六:商功章;卷十七至卷十八:差分章;卷十九,均输章;卷二十:盈朒章;卷二十一:方程章;卷二十二:粟布章;卷二十三:九章解法。书中对清初流行的“四算”,介绍较详。其弟中履在序中说:“合四法而论其长,则珠之加减,笔之除,筹之乘,尺之比例”。正确地指出了“四算”之长。其内容以西法为主,杂以中法,大抵集辑诸家之长,而增损润色,衍为此编。对“珠算”专写一卷,其内容有:加法、减法、因乘法、因乘定位法、定身因乘法、归除法、无除法、撞归法、归除定位法、定身归除法、商除法、折半法、乘除捷法、流法、乘除新法。后附“正珠乘除新法”。其中“乘除新法”,为“金蝉算”之发展,增加了五倍折半法。“正珠乘除新法”,系其子方正珠创立的方法,实乃今日之补数乘除法。 [book_img]Z_11389.jpg [book_title]提要 钦定四库全书     子部六 数度衍        天文算法类二【算书之属】提要 【臣】等谨案数度衍二十四卷 国朝方中通撰中通字位伯桐城人明检讨以智之子也以智博极羣书兼通算数中通承其家学着为是书有数原律衍几何约珠算笔算筹算尺算诸法复条列古九章名目引 御制数理精蕴法推阐其义其几何约篇本前明徐光启译本其珠算仿程大位算法统宗笔算筹算尺算采同文算指及新法算书惟数原律衍未明所自大抵裒缉诸家之长而增减润色勒为一编者也其尺算之术梅文鼎谓其三尺交加取数故只能用平分一线其比例规解之本法惜仅见其弟中履但称中通得旧法于豫章而不知其法何如并未获与中通深论又称见嘉兴陈荩谟尺算用法一卷亦只平分一线岂中通所据之法与荩谟同出一源欤盖不可考矣乾隆四十六年十月恭校上 总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅 总 校 官【臣】陆费墀 [book_title]卷首上 钦定四库全书 数度衍卷首上 桐城方中通 撰 数原 勾股原图説 一  股?较即勾股较 二  勾?较 三  勾 四  股 五  ? 六  股?较与?和 七  勾?较与?和即勾股和 八  勾?和 九  股?和 通曰九数出于勾股勾股出于河图故河图为数之原周髀曰勾广三股修四径隅五天数二十有五?之开 方也河图之数五十有五中五不用用其五十合勾自之股自之?自之之数也勾三阳数也居左和?而为八故八与三同位股四隂数也居右和?而为九故九与四同位?五勾股所求之数也居中勾?较得二居上股?较得一居下勾?较与?和为七故七与二同位股?较与?和为六故六与一同位?居中倍为十而倍之之数不可用故洛书不用十也勾股左右両较上下四和四围岂偶然哉勾不尽于三而始于三股不尽于四而始于四?不尽于五而始于五较不尽于一二而始于一二和不尽于六七八九而始于六七八九此勾股之原也 加减乘除原图 加减乘除原説 通曰不用十而用九河图变为洛书加减乘除之数皆从洛生而九数之用备焉加者并也一隂一阳相并而生阳为用故一并六为七七并二为九九并四为十三去十不用所生为三三并八为十一去十不用所生为一数始于阳阳故统隂此加之原也减者去也隂中去阳则六去一为五八去三为五阳中去隂则九去四为五七去二为五边去中存此减之原也乘者积也除者分也一无积分相对而为乘除者仍为九焉二与八对 二其八八其二所积皆十六截东南三四九之数合矣二分十六得八八分十六得二此二与八之互见也三与七对三其七七其三所积皆二十一不用三下之八七下之六而一二四五九之数合矣三分二十一得七七分二十一得三此三与七之互见也四与六对四其六六其四所积皆二十四三八亦积二十四不用三八而一二五七九之数合矣四分二十四得六六分二十四得四此四与六之互见也五宜与十对而洛书无十故以中五乘四隅所积之数必止于十而无余五乘二为一十是为两方之数【四正四隅两方相对皆十】五乘四为二十是为四方之数【四正合为二十四隅亦合为二十两正两隅亦合为二十】五乘八为四十是为八方之数【四正四隅合为四十】五除十得二五除二十得四五除三十得六五除四十得八二除十四除二十六除三十八除四十皆五此即五与十之互见也洛书无十而十藏于中矣足后反无余不足然后足此乘除之原也 九章皆勾股説 通曰九数曰方田御田畴界域曰粟布御交质变易曰差分御贵贱禀税曰少广御积幂方圆曰商功御功程积寔曰均输御逺近劳费曰盈朒御隐襍互见曰方程御错糅正负曰勾股御高深广逺周礼保氏注也周髀周之算经也陈子曰髀者股也正晷者勾也以勾为首以髀为股又曰髀者表也然周髀独明勾股不及九章何哉偃矩以望高覆矩以测深卧矩以知逺勾股之自为用也环矩以为圆合矩以为方方数为典以方出圆勾股之所生也数有可见者有?而不得见者有互见者有旁见者其变无穷藏于圎方少广圎方所出也方田商功皆少广所出一方一圎其间不齐始出差分而均输对差分之数盈朒者借差求均又差分均输所出而以方程济其穷度也量也衡也原于黄钟粟布出焉黄钟出于方圎者也三分益一圎周变为方周四分用三圎积变自方积故勾股之容圎方不同方田少广生焉折半以平粟布均输生焉盈朒方程生于诸和商功差分生于诸较勾股岂非九数之原乎设为九章者便用耳田畴界域或见于勾股少广方田统之矣交质变易或见于差分均输粟布统之矣故九章以用而分不以数而分也秦西立十八法盈朒曰叠借互征方程曰杂和较乘分少广为九而开方诸法有其七其二曰逓加倍加勾股有其略差分仍为差分粟布商功见于三率均输见于重准测名异理同究无同异也加减乘除出于洛亦成于勾股和者勾股?之相并也较者勾股?之相较也并以成加较以成减勾股自之而为?积则乘成?积开方而为?则除成有河即有洛有勾股即有加减乘除何往非图书引触哉 四算说 通曰古法用竹径一分长六寸二百七十一而成六觚为一握即少广圎以六包也后世有珠算而古法亡矣泰西之笔算筹算皆出九九尺算即比例规出三角筹尺虽不备加减其用甚便葢乘莫善于筹除莫善于笔加减莫善于珠比例莫善于尺用加为减用加减为乘除借此知彼无往而非比例也好学深思可以通而几矣 九九图説 此九九全图即相乘 相除图也【相乗者一一得一一 二得二之类相除者九除八十一得九八 除六十四得八之类】 此自乘图也【一一得一 二二得四三三得九之类】 此各并图也 【三与六并九四与八并十 二之类】 此隔一位并图也【四与十二并十六五与十五并二十之类】隔二位并【五与二十并二十五六与二十四并三十之类其隔中又 并者五之左十二十之右十五亦并二十五也余仿此】隔三位并隔四位并 隔五位并 隔六位并【无不合隔中挨次而并亦无不合】 此相减生阳图也【四去 一而生三六十四去一而生六十三九去 四而生五四十九去四而生四十五之类 右而左者自少而多即据见数减之左而 右者自多而少当除十而减其余也除皆 阴数始除八十次除六十次除四十次除 二十】 此相减生隂图也【六去 二而生四五十六去二而生五十四十二 去六而生六四十二去六而生三十六之 类自左而右者亦除十余皆阳数始除七 十次除五十次除三十】 【并首尾之一九为十并一与十六为十七并一与二十五为二以九乘之得九十折以十六乘之得二百十六以二十五乘之半得四十五为实以七十二折半得一百得六百五十折半得三为法除之得十五三十六为实以四为三百二十五为实以 故纵横皆十五也 法除之得纵横皆三五为法除之得纵横此用少广章顺加求十四      皆六十五积法得实】 【并一与三十六为三十七以三十六乘之得一千三百三】 【十二折半得六百六十六为并一与四十九为五十以四十九实以六为法除之得纵横皆乘之得二千四百五十折半得一 一百一十一      千二百二十五为实以七为法除之得纵横皆一百七十五 并一与六十四为六十五以六十四乘之得四 千一百六十折半得二千零八十为实以八为 法除之得纵横】 【皆二百六十并一与八十一为八十二以八十 一乘之得六千六百四十二折半得三千三百 二十一为实以九为法除】 【并一与一百为一百零一以一百乘之得 一万零一百折半得五千零五十为实以 十为法除之得纵横】 [子部,天文算法类,算书之属,数度衍,卷首上 【六十四子顺逆安置用横行八位为一阵首行数居北之右八行数居北之左二行数居南之左七行数居南之右三行数居东之上五行数居东之下四行数居西之下六行数居西之上其求积法如前八八图每阵得二百六十每阵各取半面四子积一百三十合而俱成一阵数无不同如截坎东四子艮西四子共得二百六十截干南四子兑北四子亦得二百六十 用七十二子为图并一与七十二得七十三以七十二乘 之得五千二百五十六折半得二千六百二十八为实以 九为法除之得每环八子为一阵各二百九十二以九阵 化为十三阵也】 通曰商高曰圎出于方方出于矩矩出于九九八十一赵君卿曰九九者乘除之原也乘之九九见乎外除之九九藏乎内故为乘之原即为除之原也夫九九者生生之谓也人知夫数始于一而不知数始于九人知夫数终于十而不知数终于九葢九与九遇始以继终终以继始旋相为用而无始无终此所谓生生也一三五七为阳而九统之二四六八为隂而九统之阳故不统阳而统隂阳者也如右诸图靡不适合然犹一定位次至错综变化无方无体而中天然之节藏往知来宁独九九而已哉 倚数图说 通曰易曰参天两地而倚数无倚不生则无数也有中倚焉有偏倚焉数始于一二何自来乎一之自并也三何自来乎一与二并也四何自来乎二之自并也一与三并也推至京垓亦无不然两相倚而生者中也以此倚彼而生者偏也不特生为然也即用亦有倚焉积小知大则用中倚由博反约则用偏倚中可互用偏惟専成裒多益寡则偏中皆用葢用之无节虽中亦偏用之当位虽偏亦中存乎其人耳数故可倚而不可倚不可倚而后可倚者若夫相追而合有偶合不可为率者有巧合可为准者相距而合有不合而适合者有似合而非合者故参两之倚可以神遇不可尽以言传苟非黙悟防通未免倚彼失此倚此失彼逐物者中无所主 自恃者有所不见此不可以入数即不可以入理也 今之五量用数图说 十百 万千百十○分厘毫丝忽微纎沙尘埃渺漠【或作微尘渺漠埃纎 沙或作防佥或作纎尘沙渺漠茫】 权衡   十斤两钱分【凡分以下俱同前】 十两钱分 升斛   十石斗升合勺抄撮圭粟粒颗【或作粒黍防糠粃或作颗粒】尺丈   十丈尺寸分 里步   十里百十步分【三百六十步为里】 十畆分【或用万千百十顷十畆分 百畆为顷】 十弓分【二百四十弓为畆 弓与?同】 通曰家语黄帝设五量曰权衡曰升斛曰尺丈曰里步曰十百不以升斛独为量也度量衡同律皆以黍生里歩不通量衡十百可通五量故今之五量用有非一则者数有相通者十之上分之下皆同十百之名惟升斛无分名耳皆遇十则升而权衡里步稍有不同斤法十六里法三百六十故也权衡之用有二或用斤或止用两里步之用有三或用里或用畆或用弓十百之用无穷矣度之通于量也二尺五寸为斛法衡之通于量也百二十斤为石法曰亿曰兆曰京曰垓曰秭曰穰曰沟曰涧曰王曰载此十等数也而其用分上中下数下数者十十变之十万曰亿十亿曰兆十兆曰京至载皆以十进中数者万万变之万万曰亿万亿曰兆万兆曰京之类也上数者数穷则变万万曰亿亿亿曰兆兆兆曰京之类也虽然数不可以名拘河洛有数无名圣人因其数而名之曰一曰二亦物谓之而然也 数度衍卷首上 [book_title]卷首下 钦定四库全书 数度衍卷首下 桐城 方中通  撰 律衍 隔八相生图说 通曰黄钟太蔟姑洗防賔夷则无射六律为阳林钟南吕应钟大吕夹钟中吕六吕为隂隔八相生者黄钟生林钟隔子至未八位也娶妻生子者黄钟一阳复娶一隂姤生二隂遯为林钟也先王父周易时论曰宫与商商与角征与羽相去各一角与征羽与宫相去各二故比征少下曰变征少高于宫曰变宫 通曰六律居子寅辰午申戌不 动六吕皆取冲位未居丑为十 二月酉居夘为二月之类是也 凡阳生隂谓之下生用三分损 一求之凡隂生阳谓之上生用 三分益一求之葢相生则以子 午分隂阳不以律吕分隂阳也 详后 诸家推算 黄钟九寸 积八十一分【长九寸围九分相乘得八十一分】 子一分【分去声以九寸为一段也】 三分前律寸数为法下生者倍其法上生者四其法实一十七万七千一百四十七数【通曰以八十一分自之得六千五百六十一又以三乘九寸得二十七为法乘之即得子实 三厯十二辰亦合】 管子遇损用益遇益用损法 郑?杜佑先倍先四前律寸数法【通曰先倍而后三分之与先三分之而后倍同先四之而后三分之与先三分之而后四之同葢先乘后除与先除后乘数无二也】 十度八寸一分【以积八十一分即作八寸一分也】 新法五寸三分一厘四毫四丝一忽【通曰以九化积八十一分为七百二十九厘又九化为六千五百六十一毫又九化为五万九千零四十九丝又九化为五十三万一千四百四十一忽以十度即作五寸三分一厘四毫四丝一忽也】 林钟六寸 积五十四分【以黄钟九寸而三分之 段得三寸于黄钟寸内损 段得六寸也 以黄钟积八十一分而三分之毎段得二十七分于林钟积内损一段得五十四分也以九分为 寸归整得六寸也】 丑三分二【三其子之一为三分两其子之一为二也前图林钟在未今取冲位居丑也六吕皆然 通曰三其二为六寸也】 下生用倍【三分黄钟九寸得三寸为法倍其法得六寸也】 实一十一万八千零九十八数【分子实为三段毎段得五万九千零四十九丑得二段为实 通曰得二段即损一段也】 管法【于黄钟积八十一分外益一段二十七分共得一百零八分而半之得五十四分亦合】郑法【先倍黄钟九寸为十八寸而三分之毎段得六寸即是】 十度五寸四分【以黄钟八寸一分而三分之每段得二寸七分于黄钟寸内损一段得五寸四分也】 新法三寸五分四厘二毫九丝四忽【通曰以九化积五十四分为四百八十六厘又九化为四千三百七十四毫又九化为三万九千三百六十六丝又九化为三十五万四千二百九十四忽以十度即作三寸五分四厘二毫九丝四忽也】 三分损一亦合【通曰以子五寸三分一厘四毫四丝一忽而三分之毎段得一寸七分七厘一毫四丝七忽丑当损一段正合三寸五分四厘二毫九丝四忽也】 太蔟八寸 积七十二分【以林钟六寸而三分之每段得二寸于林钟寸外益一段得八寸也 以林钟积五十四分而三分之毎段得十八分于林钟积外益一段得七十二分也以九分为一寸归整得八寸也】 寅九分八【三其丑之三为九四其丑之二为八也 通曰八与八寸相合】 上生用四【三分林钟六寸得二寸为法四其法得八寸也】 实一十五万七千四百六十四数【三分丑实毎段得三万九千三百六十六寅当益一段为实 通曰分子实为九段毎段得一万九千六百八十三寅得八段为实】 管法【以林钟一百零八分而三分之毎段得三十六于林钟数内损一段得七十二分亦合】郑法【先以四乘林钟六寸为二十四寸而三分之毎段得八寸即是】 十度七寸二分【以林钟五寸四分而三分之每段得一寸八分于林钟寸外益一段得七寸二分也】 新法四寸七分二厘三毫九丝二忽【通曰以九化积七十二分为六百四十八厘又九化为五千八百三十二毫又九化为五万二千四百八十八丝又九化为四十七万二千三百九十二忽以十度即作四寸七分二厘三毫九丝二忽】 三分益一亦合【通曰以丑三寸五分四厘二毫九丝四忽而三分之毎段得一寸一分八厘零九丝八忽寅当益一段正合四寸七分二厘三毫九丝二忽也】 南吕五寸三分 积四十八分【太蔟八寸不可三分乃以九乘八寸化为七十二分然后三分之每段得二十四分于太蔟积内损一段得四十八分也以九分为一寸归整得五寸零三分也】 夘二十七分十六【取冲位 三其寅之九为二十七两其寅之八为十六也 通曰三其十六为四十八分也】 下生用倍【三分太蔟积七十二分得二十四分以九分为一寸归整得二寸六分为法倍其法得四寸一十二分而归整得五寸三分也】 实一十万零四千九百七十六数【三分寅实每段得五万二千四百八十八夘当损一段为实 通曰分子实为二十七段每段得二千五百六十一夘得十六段为实】 管法【于太蔟积七十二分外益一段二十四分共得九十六分而半之得四十八分亦合】郑法【先倍太蔟八寸为十六寸此数不可三分乃以十六寸九化为一百四十四分而三分之每段得四十八分即是】 十度四寸八分【以太蔟七寸二分而三分之每段得二寸四分于太蔟寸内损一段得四寸八分也】新法三寸一分四厘九毫二丝八忽【通曰以九化积四十八分为四百三十二厘又九化为三千八百八十八毫又九化为三万四千九百九十二丝又九化为三十一万四千九百二十八忽以十度即作三寸一分四厘九毫二丝八忽也】 三分损一亦合【通曰以寅四寸七分二厘三毫九丝二忽而三分之每段得一寸五分七厘四毫六丝四忽夘当损一段正合三寸一分四厘九毫二丝八忽也】 姑洗七寸一分 积六十四分【以南吕积四十八分而三分之毎段得十六分 于南吕外益一段得六十四分也以九分为一寸归整得七寸零一分也】 辰八十一分六十四【三其夘之二十七为八十一四其夘之十六为六十四也 通曰六十四与六十四分相合】 上生用四【三分南吕积四十八分得十六分以九分为一寸归整得一寸七分为法四其法得四寸二十八分而归整得七寸一分也】 实一十三万九千九百六十八数【三分夘实每段得三万四千九百九十二辰当益一段为实 通曰分子实为八十一段每段得二千一百八十七辰得六十四段为实】 管法【以南吕九十六分而三分之每段得三十二分于南吕数内损一段得六十四分亦合】郑法【先以四乘南吕积四十八分为一百九十二分而三分之每段得六十四分即是】十度六寸四分【以南吕四寸八分而三分之每段得一寸六分于南吕寸外益一段得六寸四分也】新法四寸一分九厘九毫零四忽【通曰以九化积六十四分为五百七十六厘又九化为五千一百八十四毫又九化为四万六千六百五十六丝又九化为四十一万九千九百零四忽以十度即作四寸一分九厘九毫零四忽也】 三分益一亦合【通曰以夘三寸一分四厘九毫二丝八忽而三分之毎段得一寸零四厘九毫七丝六忽辰当益一段正合四寸一分九厘九毫零四忽也】 应钟四寸六分六厘 积三百八十四厘【姑洗六十四分又不可三分乃以九化之为五百七十六厘然后三分之毎段得一百九十二厘于姑洗化厘内损一段得三百八十四厘也以九厘为一分归整得四十二分零六厘又以九分为一寸归整得四寸零六分六厘也】 巳二百四十三分一百二十八【取冲位 三其辰之八十一为二百四十三两其辰之六十四为一百二十八也 通曰三其一百二十八为三百八十四厘也】 下生用倍【三分姑洗化积五百七十六厘得一百九十二厘归整得二寸三分三厘为法倍其法得四寸六分六厘也】 实九万三千三百一十二数【三分辰实毎段得四万六千六百五十六巳当损一段为实 通曰分子实为二百四十三段每段得七百二十九巳得一百二十八段为实】 管法【于姑洗化积五百七十六厘外益一段一百九十二厘共得七百六十八厘而半之得三百八十四厘亦合】 郑法【先倍姑洗化积五百七十六厘为一千一百五十二而三分之毎段得三百八十四厘即是】十度四寸二分六厘【以姑洗六寸四分存一厘不入算止作六寸三分九厘而三分之每段得二寸一分三厘于六寸三分九厘内损一段得四寸二分六厘也】 新法二寸七分九厘九毫三丝六忽【通曰以九化积三百八十四厘为三千四百五十六毫又九化为三万一千一百零四丝又九化为二十七万九千九百三十六忽以十度即作二寸七分九厘九毫三丝六忽也】 三分损一亦合【通曰以辰四寸一分九厘九毫零四忽而三分之每段得一寸三分九厘九毫六丝八忽巳当损一段正合二寸七分九厘九毫三丝六忽也】 防賔六寸二分八厘 积五百一十二厘【以应钟积三百八十四厘而三分之每段得一百二十八厘于应钟积外益一段得五百一十二厘也以九厘为一分归整得五十六分零八厘又以九分为一寸归整得六寸零二分八厘也】 午七百二十九分五百一十二【三其巳之二百四十三为七百二十九四其巳之一百二十八为五百一十二也通曰五百一十二与五百一十二厘相合】 上生用四【三分应钟积三百八十四厘得一百二十八厘归整得一寸五分二厘为法四其法得四寸二十分八厘而归整得六寸二分八厘也】 实一十二万四千四百一十六数【三分巳实毎段得三万一千一百零四午当益一段为实 通曰分子实为七百二十九毎段得二百四十三午得五百一十二段为实】 管法【以应钟七百六十八厘而三分之毎段得二百五十六厘于应钟数内损一段得五百一十二厘亦合】 郑法【先以四乘应钟即三百八十四厘为一千五百三十六厘而三分之每段得五百一十二厘即是】十度五寸六分八厘【以应钟四寸二分六厘而三分之每段得一寸四分二厘于应钟寸外益一段得五寸六分八厘也】 新法三寸七分三厘二毫四丝八忽【通曰以九化积五百一十二厘为四千六百零八毫又九化为四万一千四百七十二丝又九化为三十七万三千二百四十八忽以十度即作三寸七分三厘二毫四丝八忽也】 三分益一亦合【通曰以巳二寸七分九厘九毫三丝六忽而三分之毎段得九分三厘三毫一丝二忽午当益一段正合三寸七分三厘二毫四丝八忽也】 大吕八寸三分七厘六毫 积六千一百四十四毫【防賔五百一十二厘又不可三分乃以九化之为四千六百零八毫然后三分之毎段得一千五百三十六毫于防賔化毫外益一段得六千一百四十四毫也以九毫为一厘归整得六百八十二厘零六毫又以九厘为一分归整得七十五分零七厘六毫又以九分为一寸归整得八寸零三分七厘六毫也】 未二千一百八十七分一千二十四【取冲位 三其午之七百二十九为二千一百八十七两其午之五百一十二为一千零二十四也 通曰六其一千零二十四为六千一百四十四毫也】 上生用四【三分防賔化积四千六百零八毫得一千五百三十六毫归整得二寸八厘六毫为法四其法得八寸三十二厘二十四毫而归整得八寸三分七厘六毫也】 实一十六万五千八百八十八数【三分午实毎段得四万一千四百七十二未损一段得八万二千九百四十四又倍之为实 通曰未当益一?正合实数今顺次益后用损倍之亦合也分子实为二千一百八十七段毎段得八十一未得一千零二十四段为实八万二千九百四十四又倍之合实此因防賔又上生大吕重一益数故须又倍也后遇上生皆倍】 管法【于防賔化积四千六百零八毫内损一段一千五百三十六毫得三千零七十二毫而倍之得六千一百四十四毫亦合】 郑法【先以四乘防賔化积四千六百零八毫为一万八千四百三十二毫而三分之每段得六千一百四十四毫即是】 十度七寸五分六厘【以防賔五寸六分八厘又存一厘不入算止作五寸六分七厘而三分之每段得一寸八分九厘于五寸六分七厘外益一段得七寸五分六厘也】 新法四寸九分七厘六毫六丝四忽【通曰以九化积六千一百四十四毫为五万五千二百九十六丝又九化为四十九万七千六百六十四忽以十度即作四寸九分七厘六毫六丝六忽也】 三分益一亦合【通曰以午三寸七分三厘二毫四丝八忽而三分之每段得一寸二分四厘四毫一丝六忽未又当益一段正合四寸九分七厘六毫六丝四忽也】 夷则五寸五分五厘一毫 积四千零九十六毫【以大吕积六千一百四十四毫而三分之每段得二千零四十八毫于大吕积内损一段得四千零九十六毫也以九毫为一厘归整得四百五十五厘零一毫又以九厘为一分归整得五十分零五厘一毫又以九分为一寸归整得五寸零五分五厘一毫也】 申六千五百六十一分四千九十六【三其未之二千一百八十七为六千五百六十一四其未之一千零二十四为四千零九十六也 通曰四千零九十六与四千零九十六毫相合】 下生倍用【三分六吕积六千一百四十四毫得二千零四十八毫归整得二寸七分二厘五毫为法倍其法得四寸一十四分四厘一十毫而归整得五寸五分五厘一毫也】 实一十一万零五百九十二数【三分未之八万二千九百四十四毎段得二万七千六百四十八申于八万二千九百四十四外益一段为实 通曰分子实为六千五百六十一段每段得二十七申得四千零九十六段为实】 管法【以大吕三千零七十二毫而三分之每段得一千零二十四毫于大吕数外益一段得四千零九十六毫亦合】 郑法【先倍大吕积六千一百四十四毫为一万二千二百八十八毫而三分之毎段得四千零九十六毫即是】 十度五寸零四厘【以大吕七寸五分六厘而三分之每段得二寸五分二厘于大吕寸内损一段得五寸零四厘也】 新法三寸三分一厘七毫七丝六忽【通曰以九化积四千零九十六毫为三万六千八百六十四丝又九化为三十三万一千七百七十六忽以十度即作三寸三分一厘七毫七丝六忽也】 三分损一亦合【通曰以未四寸九分七厘六毫六丝四忽而三分之每段得一寸六分五厘八毫八丝八忽申当损一段正合三寸三分一厘七毫七丝六忽也】 夹钟七寸四分三厘七毫三丝积四万九千一百五十二丝【夷则四千零九十六毫又不可三分乃以九化之为三万六千八百六十四丝然后三分之每段得一万二千二百八十八丝于夷则化丝外益一段得四万九千一百五十二丝也以九丝为一毫归整得五千四百六十一毫三丝又以九毫为一厘归整得六百零六厘零七毫三丝又以九厘为一分归整得六十七分零三厘七毫三丝又以九分为一寸归整得七寸零四分三厘七毫三丝也】 酉一万九千六百八十三分八千一百九十二【取冲位三其申之 六千五百六十一为一万九千六百八十三两其申之四千零九十六为八千一百九十二也 通曰六其八千一百九十二为四万九千一百五十二丝也】 上生用四【三分夷则化积三万六千八百六十四丝得一万二千二百八十八丝归整一寸七分七厘六毫三丝为法四其法得四寸二十八分二十八厘二十四毫一十二丝而归整得七寸四分三厘七毫三丝也】 实一十四万七千四百五十六数【三分申实每段得三万六千八百六十四酉损一段得七万三千七百二十八又倍之为实 通曰分子实为一万九千六百八十三段每段得九酉得八千一百九十二段为实七万三千七百二十八又倍之合实】 管法【于夷则化积三万六千八百六十四丝内损一段一万二千二百八十八丝得二万四千五百七十六丝而倍之得四万九千一百五十二丝亦合】 郑法【先以四乘夷则化积三万六千八百六十四丝为一十四万七千四百五十六丝而三分之每段得四万九千一百五十二丝即是】 十度六寸七分二厘【以夷则五寸零四厘而三分之每段得一寸六分八厘于夷则寸外益一段得六寸七分二厘也】 新法四寸四分二厘三毫六丝八忽【通曰以九化积四万九千一百五十二丝为四十四万二千三百六十八忽以十度即作四寸四分二厘三毫六丝八忽也】三分益一亦合【通曰以申三寸三分一厘七毫七丝六怱而三分之每段得一寸一分零五毫九丝二忽酉当益一段正合四寸四分二厘三毫六丝八忽也】 无射四寸八分八厘四毫八丝 积三万二千七百六十八丝【以夹钟积四万九千一百五十二丝而三分之每段得一万六千三百八十四丝于夹钟积内损一丝得三万二千七百六十八段也以九丝为一毫归整得三千六百四十毫零八丝又以九毫为一厘归整得四百零四厘零四毫八丝又以九厘为一分归整得四十四分零八厘四毫八丝又以九分为一寸归整得四寸零八分八厘四毫八丝也】 戍五万九千四十九分三万二千七百六十八【三其酉之一万九千六百八十三为五万九千零四十九四其酉之八千一百九十二为三万二千七百六十八也 通曰三万二千七百六十八与三万二千七百六十八丝相合】 下生用倍【三分夹钟积四万九千一百五十二丝得一万六千三百八十四丝归整得二寸四分四厘二毫四丝为法倍其法得四寸八分八厘四毫八丝也】 实九万八千三百零四数【三分酉之七万三千七百二十八毎段得二万四千五百七十六戌于七万三千七百二十八外益一段为实 通曰分子实为五万九千零四十九段毎段得三戌得三万二千七百六十八段为实】 管法【以夹钟二万四千五百七十六丝而三分之每段得八千一百九十二丝于夹钟数外益一段得三万二千七百六十八丝亦合】 郑法【先倍夹钟积四万九千一百五十二丝为九万八千三百零四丝而三分之毎段得三万二千七百六十八丝即是】 十度四寸四分八厘【以夹钟六寸七分二厘而三分之每段得二寸二分四厘于夹钟寸内损一段得四寸四分八厘也】 新法二寸九分四厘九毫一丝二忽【通曰以九化积三万二千七百六十八丝为二十九万四千九百一十二忽以十度即作二寸九分四厘九毫一丝二忽也】三分损一亦合【通曰以酉四寸四分二厘三毫六丝八忽而三分之每段得一寸四分七厘四毫五丝六忽戌当损一段正合二寸九分四厘九毫一丝二忽也】 中吕六寸五分八厘三毫四丝六忽积三十九万三千二百一十六忽【无射三万二千七百六十八丝又不可三分乃以九化之为二十九万四千九百一十二忽然后三分之每段得九万八千三百零四忽于无射化忽外益一段得三十九万三千二百一十六忽也以九忽为一丝归整得四万三千六百九十丝零六忽又以九丝为一毫归整得四千八百五十四毫零四丝六忽又以九毫为一厘归整得五百三十九厘零三毫四丝六怱又以九厘为一毫归整得五十九分零八厘三毫四丝六忽又以九分为一寸归整得六寸零五分八厘三毫四丝六忽也】 亥一十七万七千一百四十七分六万五千五百三十六【取冲位三其戌之五万九千零四十九为一十七万七千一百四十七此即黄钟之实也两其戌之三万二千七百六十八为六万五千五百三十六也 通曰六其六万五千五百三十六为三十九万三千二百一十六忽也】 上生用四【三分无射化积二十九万四千九百一十二忽得九万八千三百零四怱归整得一寸五分八厘七毫五丝六怱为法四其法得四寸二十分三十二厘二十八毫二十丝二十四忽而归整得六寸五分八厘三毫四丝六怱也】 实一十三万一千零七十二数【三分戌实每段得三万二千七百六十八亥损一段得六万五千五百三十六又倍之为实通曰分子实一十七万七千一百四十七段每段得一亥得六万五千五百三十六段又倍为实】 管法【于无射化积二十九万四千九百一十二忽内损一段九万八千三百零四忽得一十九万六千六百零八忽而倍之得三十九万三千二百一十六忽亦合】 郑法【先以四乘无射化积二十九万四千九百一十二忽为一百一十七万九千六百四十八忽而三分之每段得三十九万三千二百一十六忽即是】 十度五寸九分六厘【以无射四寸四分八厘又存一厘不入算止作四寸四分七厘而三分之每段得一寸四分九厘于四寸四分七厘外益一段得五寸九分六厘也】 新法三寸九分三厘二毫一丝六忽【通曰以积三十九万三千二百一十六忽十度即作三寸九分三厘二毫一丝六忽也】 三分益一亦合【通曰以戌二寸九分四厘九毫一丝二忽而三分之毎段得九分八厘三毫零四忽亥当益一段正合三寸九分三厘二毫一丝六忽也】 通曰黄钟为宫生林钟为征林钟生太蔟为商三者皆寸数故曰三统京房所衍用宫征商者此也太蔟生南吕为羽南宫生姑洗为角二者皆分数故曰五音姑洗生应钟为变宫应钟生防賔为变征二者皆厘数故曰七调也独寸得三律自寸化分以下则皆厯二而变故防賔生大吕大吕生夷则二者皆毫数夷则生夹钟夹钟生无射二者皆丝数无射生中吕则忽数也黄钟以三为法以九为度用奇成数故遇三遇五遇七遇九遇十一皆变也损益乘除三率法耳诸家推算数皆符合惟十度存三厘未当通今列诸家于前以忽数准寸而用十度立新法于后使长短易较用十度以合九度岂以十度废九度哉更明比例多寡则三分损益皆可置之也 比例图 约李瞿经纬説【李文利瞿九思】 三十九分者黄钟之律阳之始也由是四十八分为大吕又五十七分为太蔟又六十六分为夹钟又七十五分为姑洗又八十四分为中吕九十分者防賔之律阳之极也由是八十一分为林钟七十二分为夷则六十三分为南吕五十四分为无射四十五分为应钟子午者隂阳之府也黄钟生阳防賔消阳二律纵为经十律横为纬太?曰东西为纬南北为经经以隂阳之升降言也子午得天地之中左右律之升降皆不能过也但 律吕之数纪阳不纪隂故于防賔以下六律不言隂之生但纪其阳之降耳黄钟长三寸九分以九六升阳至防賔而极其长防賔长九寸以九六归阳至黄钟而极其短二律特其两端左右莫不受法于二律则经纬见矣十律为纬亦有二义自其相对者言之丑与亥对寅与戌对夘与酉对辰与申对巳与未对葢左五律纪阳之升左皆为阳左比右各多三分者阳道常饶也右五律纪阳之降右皆为隂右比左各少三分者隂道常乏也左右相对虽差三分而皆以同类为偶如丑亥皆四寸有奇寅申皆五寸有奇夘酉皆六寸有奇辰申皆七寸有奇巳未皆八寸有奇是也左律分寸之数皆十二如丑律四八之类皆本于黄钟之三九也右律分寸之数皆九如未律八一之类皆本于防賔之九也非纬而何此是言其对待者自其相冲者言之寸数俱一百二十分数俱九共成一百二十九分丑未二律一百二十九分寅申二律一百二十九分夘酉二律一百二十九分辰戌二律一百二十九分巳亥二律一百二十九分者即黄钟防賔之律黄钟卅九防賔九十合之共一百二十九可见二律为经之义此是言其错综者皆自然而然不待安排夫子午为经左右为纬是以隂阳之消长而言一定之理也若夫旋宫之制按月用律则十二律皆可为经如以黄钟为宫则隔八相生以林钟为征太蔟为商南吕为羽姑洗为角应钟为变宫防賔为变征则为经征商羽角皆左右往来以为之纬也律为经莫不皆然是又流行之用而不可以执一论也【十二律虽分经纬要之一黄钟足以该之黄钟三寸以三因之十二律无非三也黄钟九分以九因之十二律无非九也丑四十八分五九而余其三也三之则为十六矣寅五十七分六九而余其三也三之则为十九矣夘六十六分七九而余其三也三之则为二十二矣辰七十五分八九而余其三也三之则为二十五矣巳八十四分九九而余其三也三之则为二十八矣自丑至巳以三约之皆无余分以九约之毎多三分者左益三分也未八十一分九其三也三之则为二十七矣申七十二分九其八也三之则为二十四矣酉六十三分九其七也三之则为二十一矣戌五十四分九其六也三之则为十八矣亥四十五分九其五也三之则为十五矣自未至亥以三约之亦无余分以九约之比左少三分右损三分也此黄钟之三九所以为十一律之本也】 通曰凡物凡理莫不具有经纬二端黄钟防賔为经十律为纬而黄钟更自有经纬也长度为经围度非纬乎可知十二律互相为经纬又各自为经纬也经亦可以为纬纬亦可以为经也然而无别不立无交不成经非纬纬非经此别也非经无纬非纬无经此交也 旋相为宫图 通曰礼运曰五声六律十二管还相为宫者五其十二而成六十黄钟始之南宫终之也然始终亦不得已而究无始终而无非始无非终也 一 黄钟【宫】 林钟【征】 太蔟【商】 南吕【羽】 姑洗【角】二 林钟【宫】 太蔟【征】 南吕【商】 姑洗【羽】 应钟【角】三 太蔟【宫】 南吕【征】 姑洗【商】 应钟【羽】 防宾【角】四 南吕【宫】 姑洗【征】 应钟【商】 防宾【羽】 大吕【角】五  姑洗【宫】 应钟【征】 防宾【商】 大吕【羽】 夷则【角】六  应钟【宫】 防宾【征】 大吕【商】 夷则【羽】 夹钟【角】七  防宾【宫】 大吕【征】 夷则【商】 夹钟【羽】 无射【角】八  大吕【宫】 夷则【征】 夹钟【商】 无射【羽】 中吕【角】九  夷则【宫】 夹钟【徴】 无射【商】 中吕【羽】 黄钟【角】十  夹钟【宫】 无射【征】 中吕【商】 黄钟【羽】 林钟【角】十一 无射【宫】 中吕【征】 黄钟【商】 林钟【羽】 太蔟【角】十二 中吕【宫】 黄钟【征】 林钟【商】 太蔟【羽】 南吕【角】 京房六十律 通曰京房五音用三者取宫征商皆寸数为三统故也黄钟太蔟姑洗皆阳居阳林钟南吕皆隂居隂五者皆得位也得位者生五子共生二十五子大吕夹钟仲吕皆隂居阳夷则无射皆阳居隂五者皆失位也失位者生三子共生十五子应钟防賔处隂阳交际之间不得不失皆生四子共生八子以四十八子并十二母为六十律也列于后 【得位】黄钟【宫子】林钟【征】太蔟【商】一日律九寸 【一子】色育 谦待 未知 六日律八寸九分微强【二子】执始 去灭 时息 六日律八寸八分小分八弱【三子】丙盛 安度 屈齐 六日律八寸七分小分六微弱【四子】分勲 归嘉 随期 六日律八寸六分小分四强【五子】质未 否与 刑晋 六日律八寸五分小分二强 【失位】大吕【宫丑】夷则【征】夹钟【商】八日律八寸四分小分三弱【一子】分否 解刑 开时 八日律八寸三分小分一强【二子】陵隂 去南 侯嘉 八日律八寸二分一少弱【三子】少出 分积 争南 六日律八寸小分九强【得位】太蔟【宫寅】南吕【征】姑洗【商】一日律八寸 【一子】未知 白吕 南授 六日律七寸九分小分八强【二子】时息 结躳 变虞 二日律七寸八分小分九强【三子】屈齐 归期 路时 七日律七寸七分小分九强【四子】随期 未夘 刑始 六日律七寸六分小分八强【五子】刑晋 夷汗 依行 六日律七寸五分小分八弱 【失位】夹钟【宫夘】无射【征】中吕【商】六日律七寸四分小分九强【一子】开时 闭掩 南中 七日律七寸三分小分九微弱【二子】侯嘉 邻齐 内负 七日律七寸一分小分九微强【三子】争南 期保 总应 七日律七寸一分小分九强 【得位】姑洗【宫辰】应钟【征】防賔【商】一日律七寸一分小分九微强【一子】南授【一子】分乌【一子】南事 六日律七寸小分九大强【二子】变虞【二子】迟内【二子】盛变 六日律七寸小分一强【三子】路时【三子】未育【三子】离躳 六日律六寸九分小分一微强【四子】刑始【四子】迟时【四子】制时 五日律六寸八分小分三弱【五子】依行 色育 谦待 七日律六寸七分小分三大强通曰色育不宜入应钟子行谦待不宜入防賔子行 【失位】中宫【宫巳】执始【防】去灭【商】八日律六寸六分小分大弱【一子】南中 丙盛 安度 七日律六寸五分小分七微弱【二子】内负 分勲 归嘉 八日律六寸四分小分八强【三子】总应 质未 否与 七日律六寸三分小分九强 【不得不失】防賔【宫午】大吕【征】夷则【商】一日律六寸三分小分二微弱【一子】南事【上生穷无征商不为宫】  七日律六寸三分小分一弱【二子】盛变 分否 解刑 七日律六寸二分小分三大强【三子】离躳 陵隂 去南 七日律六寸一分小分五微强【四子】制时 少出 分积 八日律六寸小分七弱 【得位】林钟【宫未】太蔟【征】南吕【商】一日律六寸 【一子】谦待 未知 白吕 五日律五寸九分小分九弱【二子】去灭 时息 结躳 七日律五寸九分小分二弱【三子】安度 屈齐 归期 六日律五寸八分小分四弱【四子】归嘉 随期 未夘 六日律五寸七分小分六微强【五子】否与 刑晋 夷汗 五日律五寸六分小分八强【失位】夷则【宫申】夹钟【征】无射【商】八日律五寸六分小分二弱【一子】解刑 开时 闭掩 八日律五寸五分小分四强【二子】去南 侯嘉 邻齐 八日律五寸四分小分六大强【三子】分积 争南 期保 七日律五寸三分小分九强 【得位】南吕【宫酉】姑洗【征】应钟【商】一日律五寸三分小分三强【一子】白吕 南授 分乌 五日律五寸三分小分二强【二子】结躳 变虞 迟内 七日律五寸二分小分六强【三子】归期 路时 未育 六日律五寸一分小分九微强【四子】未夘 刑始 迟时 六日律五寸一分小分二微强【五子】夷汗 依行 色育 五日律五寸小分五强通曰色育入应钟子行凡二见谦待入防賔子行凡一见葢中吕无射皆失位生子三并母为四截去黄钟林钟各首子余四子始可配位此亦不得不然也 【失位】无射【宫戌】中吕【征】执始【商】八日律四寸九分小分九强【一子】闭掩 南中 丙盛 八日律四寸九分小分三弱【二子】邻齐 内负 分勲 七日律四寸八分小分六微弱【三子】期保 总应 质未 八日律四寸七分小分九微强【不得不失】应钟【宫亥】防賔【征】大吕商一日律四寸九分小分四微强【一子】分乌 南事【此无商则不为宫】七日律四寸七分小分三微强【二子】迟内 盛变 分否 八日律四寸六分小分八弱【三子】未育 离躳 陵隂 八日律四寸六分小分一微强【四子】迟时 制时 少出 六日律四寸五分小分五弱 六十律生次自黄钟至中吕十二母照常其四十八子自中吕 【上生】执始【黄次  下子   生】去灭【林次  上子   生】时息【太次子下生】结躳【南次  上子   生】变虞【姑次  下子   生】迟内【应次子上生】盛变【防次  上子   生】分否【大长  下子   生】解刑【夷长子】 【上生】开时【夹长  下子   生】闭掩【无长  上子   生】南中【中长子】 【上生】丙盛【黄三  下子   生】安度【林三  上子   生】屈齐【太三子】 【下生】归期【南三  上子   生】路时【姑三  下子   生】未育【应三子】 【上生】离躳【防三  上子   生】陵隂【大次  下子   生】去南【夷次子】 【上生】侯嘉【夹次  下子   生】邻齐【无次  上子   生】内负【中次子】 【上生】分勲【黄四  下子   生】归嘉【林四  上子   生】随期【太四子】 【下生】未夘【南四  上子   生】刑始【姑四  下子   生】迟时【应四子】 【上生】制时【防四  上子   生】少出【大三  下子   生】分积【夷三子】 【上生】争南【夹三  下子   生】期保【无三  上子   生】总应【中三子】 【上生】质未【黄五  下子   生】否与【林五  上子   生】刑晋【太五子】 【下生】夷汗【南五  上子   生】依行【姑五  下子   生】色育【黄长子】 【上生】谦待【林长  上子   生】未知【太长  下子   生】白吕【南长子】 【上生】南授【姑长  下子   生】分乌【应长  上子   生】南事【防长子】 七调图 一宫 黄【正】 林【正】 太【正】 南【正】 姑【正半】 应【正】 防【正】二宫 林【正】 太【正半】 南【正】 姑【正半】 应【正】 防【正半】 大【正半】三宫 太【正】 南【正】 姑【正】 应【正】 防【正】 大【正半】 夷【正】四宫 南【正】 姑【正半】 应【正】 防【正半】 大【正半】 夷【正半】 夹【正半】五宫 姑【正】 应【正】 防【正】 大【正半】 夷【正半】 夹【正半】 无【正】六宫 应【正】 防【正半】 大【正半】 夷【正半】 夹【正半】 无【正半】 中【正半】七宫 防【正】 大【正半】 夷【正】 夹【正半】 无【正】 中【正半】 黄【变半】八宫 大【正】 夷【正】 夹【正】 无【正】 中【正】 黄【变半】 林【变】九宫 夷【正】 夹【正半】 无【正】 中【正半】 黄【变半】 林【变半】 太【变半】十宫 夹【正】 无【正】 中【正】 黄【变半】 林【变】 太【变半】 南【变】十一宫无【正】 中【正半】 黄【变半】 林【变半】 太【变半】 南【变半】 姑【变半】十二宫中【正】 黄【变半】 林【变】 太【变半】 南【变】 姑【变半】 应【变】 琴度 通曰四十五度三分用一为十五度十二 度二分益一为十八度二十四度二分益 一为三十六度又以三十六度三分损一 为二十四度十八度三分损一为十二度 十五度三分者九为四十五度故黄钟以 三为法以九为度而琴以三始九终也琴 分三百六十度为十四段自临岳至四徽 得四段自五徽至九徽得四段自十徽至 龙龈得四段其四徽至五徽与九徽至十 徽之二段不入损益而三十度又独为损益者三分十八度而益二分为三十度四分二十四度而益一分为三十度皆以六度为一分也三大段二小段不离五也且倍十五即成三十倍十二即成二十四倍十八即成三十六此亦加倍法耳后半变加为减矣大约七徽为琴之中分百八十度者二四徽为临岳七徽之中十徽为七徽龙龈之中分九十度者四而一徽又为 临岳四徽之中十三徽又为十徽龙龈之中也 箫笛七调升降图説 通曰合言之自极低以至极高总为一调每孔有上中下三声耳分言之正宫为中调三升三降而成七也自正宫渐降而低为六字调再降而低为凡字调再降而低为凄凉调也自正宫渐升而高为乙字调再升而高为梅花调再升而高为闭工调也闭乙凡字为南调用乙凡字为北调而南北各调中又皆有子母调是所谓二十八调也中径广者其声低中径小者其声高成五十六调矣长者其声逺短者其声近又成百有一十二调若细剖之可至无竆然而调则不逾乎七音则不过乎五者何也南成其为南之七调北成其为北之七调高成其为高之七调低成其为低之七调逺成其为逺之七调近成其为近之七调非于七调外更增一调也不过于中重重剖之耳葢音止于五乃天然之节也如南调合四上尺工为五音六即高合字五即高四字因而防悟凡八音与夫人禽一切有声之物皆隔五必合音安得而不止于五耶乙凡者二变也北调用之为合乙四上尺工凡亦止七也黄钟之五正二变适符箫笛之七调此岂人力思量所能及哉惜乎以俗乐目之不能以今证古耳【高字有定而无定也笛孔犹可箫之合式者始不移其不合式者必须变孔以合之】 横调直调说 通曰气交而成声声交而成调调亦不得巳之名也同此调也剖之为七曰凄凉曰凡字曰六字曰正宫曰乙字曰梅花曰闭工此以高下分为直调也同此直调也再剖之为十三曰黄钟曰正宫曰大石曰小石曰仙吕曰中吕曰南吕曰双调曰越调曰商调曰商角曰般涉曰子母此以曲名分为横调也然声之高下复有直有横如合与六四与五本一孔而因气之缓急分高下者此横高下也正宫之四即乙字之合乙字之四即梅花之合本一字而因孔之升降分高下者此直高下也正如琴之十三徽为横七弦为直耳至于曲名分调有阶级升降循次而转者有逺近升降隔二隔三而转者有高字多而低字少者有低字多而高字少者有急者有缓者此虽横调亦未尝不因高下而分也始知声音之理无出于清浊高下升降缓急之外者同符河洛音本天然不过随时安名字耳又何疑乎今乐非古乐哉 数度衍卷首下 [book_title]卷一 钦定四库全书 数度衍卷一 桐城 方中通 撰 珠算 加法【一曰上法】 一上一 一下五去四 一退九进一十【进一位上一子非専指一十数也】二上二 二下五去三 二退八进一十 三上三 三下五去二 三退七进一十 四上四 四下五去一 四退六进一十 五上五 五退五进一十 六上六 六上一去五进一十 六退四进一十七上七 七上二去五进一十 七退三进一十八上八 八上三去五进一十 八退二进一十九上九 九上四去五进一十 九退一进一十式有物一十二又五十四问共若干曰六十六术一上一二上二此即一十二也大在左前小居右后故一十在左而二在右也五上五与一十同位四下五去一与二同位此加五十四在一十二之上也合为六十六矣 减法【一曰退法】 一退一 一退十还九【左位退一子本位上九】一上四退五二退二 二退十还八 二上三退五 三退三 三退十还七 三上二退五 四退四 四退十还六 四上一退五 五退五 五退十还五 六退六 六退十还四 七退七 七退十还三 八退八 八退十还二 九退九 九退十还一 式有物六十六内欲减去五十四尚余若干曰一十二术置六十六于盘中五退五在六十位上四上一退五在六位上六十退去五十存一十六退去四存二所余为一十二矣 因乘法 一一如一 一二如二 二二如四 一三如三 二三如六 三三如九 一四如四 二四如八 三四一十二 四四一十六一五如五 二五一十 三五一十五 四五二十五五二十五 一六如六 二六一十二 三六一十八 四六二十四 五六三十 六六三十六 一七如七 二七一十四 三七二十一 四七二十八 五七三十五 六七四十二 七七四十九 一八如八 二八一十六 三八二十四 四八三十二 五八四十 六八四十八 七八五十六 八八六十四 一九如九 二九一十八 三九二十七 四九三十六 五九四十五 六九五十四 七九六十三八九七十二 九九八十一 术曰一位曰因二位曰乘有法有实以法乘实为所求数也然法实亦可互用故曰相乘一位法者相因得数而己法二位以至多位者自左向右用第二位法起诸位法毕然后乘法首位也以法乘实先乘实右末位向左逐位遍乘乘毕而实数即变为所求数矣有防尾乘破头乘皆不适用故不录 因式有三百六十五人毎人八两问共若干曰二千九百二十两术以三百六十五人为实列盘左以八两为法列盘右先以八乘实末寅位五曰五八得四十变寅位五为四次以八乘丑实六曰六八四十八变丑位六为四加八于寅位四上曰八退二进一十则寅位之四又变为二丑位之四曰一下五去四又变为五次以八乘子实三曰三八二十四变子位三为二加四于丑位五上为九乘毕得二千九百二十两也 通曰凡左右相乘必有二位数曰防十防今如一位法者十当在本位零当在下位也本位者所乘实数之位也下位者仅下所乘实数一位也如八乘五则五为本位得四十则四当在五位上也八乘六则六为本位得四十八则四当在六位上八当在下位也八乘三则三又为本位矣 因乘式有三百六十五人毎人一十二两问共若干曰四千三百八十两术以三百六十五人为实一十二两为法先以第二位乙法二乘寅实五曰二五一十一在夘位然后以法首一乘寅实五曰一五如五五加在夘位一上为六次以乙法二乘丑实六曰二六一十二一在寅位二加在夘位六上为八以甲法一乘丑实六曰一六如六六加在寅位一上为七次以乙法二乘子实三曰二三如六六加在寅位七上七变为三而 丑位上一矣以甲法一乘子实三曰一三如三三加在丑位一上为四得四千三百八十两也 通曰凡因乘多位先用第二位法乘起者曰防十防十当在本位之下位零又在下位之下也挨次退右留本位以待法首变之耳如乙法二乘寅实五得一十则一当在夘位也甲法一乘寅实五得五五乃零数当在下位之下故亦在夘位上也盖以寅为本位之时则夘为下位辰为下位之下也以丑为本位之时寅为下位夘为下位之下也 因乘定位法 式三百六十五人毎人一十二两共得四三八问四为何数曰千数术通曰以法首齐实首布列甲子同位乙丑同位从丑下一位呼实首百是寅位为百矣向左推 去丑为千位遇变后得数之始而止 今变后之首在丑即知四为千也但 法末必单数乃可如今一十二两是 也若一两二钱或一百二十两则不 同矣总以单数为率下则顺推上则逆推可耳又术通曰视得数之首在实之何位上今在实之十位上又视法有防位今有二位当以十升二位曰百曰千亦知为千也 定身因乘法 式有三百六十五人毎人一十二两问共若干曰四千三百八十两术置实数以法一十二除首一不用以乙二为法先以法二乘寅五曰二五一十加一于寅为六不在下位矣次以法二乘丑六曰二六一十二加一于丑六为七加二于寅六为八次以法二乘子三曰二三如 六加六于丑七变七为三变子三为四合问 通曰凡法首遇一者用之其在位实数即作甲法之乘数矣多位法者以乙法为首从丙法乘起粟布章斤求两用身加六 归除法 一 二一添作五 逢二进一十 三一三余一 三二六余二 逢三进一十 四一二余二 四二添作五 四三七余二 逢四进一十 五一倍作二 五二倍作四 五三倍作六 五四倍作八 逢五进一十 六一下加四 六二三余二 六三添作五 六四六余四 六五八余二 逢六进一十 七一下加三 七二下加六 七三四余二 七四五余五 七五七余一 七六八余四 逢七进一十八一下加二 八二下加四 八三下加六 八四添作五 八五六余二 八六七余四 八七八余六逢八进一十 九一下加一 九二下加二 九三下加三 九四下加四 九五下加五 九六下加六 九七下加七九八下加八 逢九进一十 术曰一位曰归二位曰除【一曰混归】有法有实以法除实得所求数也一位法者止用归法多位法者法首归得某数次法乘其数而除实自左向右以逐位法除实实亦自左向右挨次除之除毕一遍又以法首归之次法除之以实尽为度变后数即所求数也又有无除撞归二法诀曰惟有归除法最奇将身归了次除之有归若是无除数起一还将原数施若遇本归归不得撞归之法不须迟俱详后 通曰二与五四与二十五因归皆可互用又三与六可当一十八四与六可当二十四凡数之相通者甚多亦在乎熟之而已 归式有银二千九百二十两八人分之问各若干曰三百六十五两术以二千九百二十两为实八人为法以法八归子实二曰八二下加四将子实二不同丑九加四曰四下五去一此用梁上之上一子也丑九变为十三盖不用四退六进一十者归后数上止可加归得数不可加余实也次以法八归丑十三曰逢八进一十于子位归后二 上加一为三丑实存五又以法八归丑五曰八五六余二丑五变为六寅二加二为四乃以法八归寅四曰八四添作五寅四变为五而实尽矣得三百六十五两也通曰凡曰下加曰余防皆归后而有余实也如今八人分二千两各得二百共去实一千六百存实四百故曰八二下加四也又如今之八五六余二乃八人分五百各得六十共去四百八十而存实二十也凡曰添作防乃归实无余者也如今八四添作五乃八人分四十两各得五两而实尽也凡曰进防十者乃实内满防归之数也满一遍进一十满二遍进二十如今八归曰逢八进一十乃一千三百之内有一回八百各得一百故曰进一也进在实前余在实后归变本实切勿错位归除式有银四千三百八十两三百六十五人分之问各若干曰一十二两术以四千三百八十为实三百六十五为法先以法首三归实首四曰逢三进一十于子位上一丑减三存一乃以乙法六乘归后子一曰一六如六于寅位除六曰六退十还四抹去丑一寅三加四为七又以丙法五乘归后子一曰一五如五于夘八除五存三而法位毕矣第二遍再以法首三归寅位存实七曰逢六进二十于丑上二寅减六存一乃以乙法六乘第二遍归后丑二曰二六一十二于寅除一夘除二又以丙法五乘第二遍归后丑二曰 二五一十于卯除一而法位又毕矣实未尽则又用前法今实巳尽得一十二两也 通曰凡归数即变实之本位除数当除实之下位本位者归后数所在之位也除实之下位者即本位之下一位也此与本实不同本实有时即本位有时乃本位之下位也除之十数在下位而零数又在下位之下也如法三归实四曰逢三进一十四为本实进在实前故所归之一当在四前子位也而本实之四变为一矣一在子上则子为本位也乙法六乘归数除实曰一六如六此零数也故于寅除六此子为本位而寅为下位之下耳若第二遍乙法除实曰二六一十二则于寅除一夘除二矣此丑为本位也 无除法 一归起一还一 二归起一还二【至九归起一还九】式有银一百零八两二十七人分之问各若干曰四两术置银为实人为法以法首二归实首一曰二一添作五变子为五乙法七当乘归数五为三十五于丑寅内除之而丑位无实可除今乃二归曰起一还二起子位归数五内之一改五为四而还丑位二为存实肰后以乙法七乘归数四曰四七二十八于丑除二十寅除八实尽得四两也 通曰凡起防还防者归后之一子即当其防归之数也如今二归曰二一添作五是五内一字当二子也故起一即还二矣夫起一者如毎人不可得五止可得四耳 撞归法 见一无除作九一 见二无除作九二【至见九无除作九九】式有银二百一十六两二十四人分之问各若干曰九两术置银为实人为法以法首二归实首二若用逢二进一十则乙法之一四如四丑一数不足除矣此乃二归曰见二无除作九二变子二为九加二于丑一为三然后以乙法四乘归数九曰四九三十六于丑除 三十寅除六实尽得九两也 通曰凡撞归者皆不可得十止可得 九也法实首数同而次实少于次法 者用之盘梁上有三子始便 除归定位法 式三百六十五人分四千三百八十两得一二问一为 何数曰十数术通曰以法布列实左 法末仅在实首四之上位从列法首 之子位呼实首千数顺右而下丑为 百寅为十遇变后得数之首位而止 今变数首一在寅即知一为十数也但法末必单数乃可如五个半人则须除去半人不列位矣如三百六十人又须列○作一位矣又术通曰视得数之首在实之何位今在实之千前一位乃万位也又视法有防位今有三位当以万降三位曰千曰百曰十亦知一为十也 定身归除法 式有银九十一两一十三人分之问各若干曰七两置银为实人为法以法首一除去不用止用乙法三于实首九内存身减之当存七乃以法三乘七曰三七二十一于子实内存七外减二十又减丑一实尽合问 通曰凡存数有定非可随意而存也如今式 子九内存八则下无二十四可减存六则减一十八外余实又多故定于七也法首遇一用此粟布章两求斤用减六存身 商除法 式有银三千零一十五两六十七人分之问各若干曰四十五两术置银为实人为法以法首六十于实首三千内商有防回今商四十是有四十回六十也即以法首六乘所商四为二十四于子除二丑除四曰四退十还六共除二 千四百以乙法七乘所商四为二十八于丑除二寅除八曰八退十还二又除二百八十余实三百三十五次以法六十于三百内商有防回今商五是有五回六十也以法首六乘次商五为三十于丑除三又除三百以乙法七乘次商五为三十五于寅除三夘除五又除三十五实尽合问 通曰凡商数有定如今初商五十则实不足除次法商三十则实余太多故定当四十耳若论盘中变位得数法首多于实首者列商数于实左一位法首少于实首者列商数于实左隔一位挨次商列即得变数 折半法 式有银六十四两八人分之问各若干曰八两术置法实以法八折半为四实六十四折半为三十二又以法折半为二实折半为一十六再以法折半为一实折半为八法折至一数而止即存实八为各得数也凡法遇偶数者可用此 乘除防法【即金蝉蜕殻】 因乘诀曰起双下加倍见一只还原倍一挨身上余皆隔位迁归除诀曰加双下除倍加一下除原陪一挨身除余皆隔位迁 乘式有米三石五斗毎斗价银七分问共银若干曰二两四钱五分术置米为实以价七分为原数倍得一钱四分为倍数先于实末五斗上呼起双下加倍起去二斗挨身上一钱次位上四分再起二斗挨身上一钱四分却呼见一只还原起去一斗隔位上七分次于三石上呼起双下加陪起二石挨身上一两四钱却呼见一只还原起一石隔位上七钱合问 又式有布五十七疋毎疋价银二钱五分问共银若干曰一十四两二钱五分术置布为实以价二钱五分为原数倍得五钱为倍数先于实末七疋内起三个二疋挨身上三个五钱又起一疋挨身上二钱五分次于五十疋内起两个二十疋挨身上两个五两又起一十疋挨身上二两五钱合问 通曰前式价是分倍是钱则倍数挨身上原数隔位上后式价是钱倍亦是钱故倍数原数俱挨身上 除式有钱二千二百五十文给九十人问毎人若干曰二十五文术置钱为实以九十人为原数倍得一百八十人为倍数先于实首二千前挨身呼加双下除倍除实一千八百余实四百五十次于四百前挨身呼加双下除倍除实一百八十又呼加双下除倍除实一百八十再呼加一下除原隔位除九十合问 又式有油四百二十斤毎油七斤半换豆一斗问共换豆若干曰五石六斗术置油为实以七斤半为原数倍得一十五斤为倍数先于实首四百前加两个双除两个一百五十斤又加一除七十五斤次于余实四十五斤前加三个双除三个一十五斤合问 通曰又有二句除诀曰有除隔位进无除挨身进止用原数从实前隔一位起毎上一子除一遍原数乘法则毎抺去实尾一子挨身上一遍原数不足为法姑附于此 流法 乘式有田九百八十一畆毎畆一分八厘九毫问共若干曰一十八两五钱四分零九厘术先以法一分八厘九毫衍定遇一曰一八九遇二曰三七八遇三曰五六七遇四曰七五六遇五曰九四五遇六曰一十一三四遇七曰一十三二三遇八曰一十五一二遇九曰一十七零一乃从实末因之遇某数即用某诀有十字者破本身起余皆挨身一位起也 除式有银一十八两五钱四分零九毫派在九百八十一畆问毎畆若干曰一分八厘八毫九丝九不尽术先以法九百八十一畆衍定遇一曰一零一九三六七遇二曰二零三八七三五遇三曰三零五八一零三遇四曰四零七七四七一遇五曰五零九六八三九遇六曰六一一六二零七遇七曰七一三五五七五遇八曰八一五四九四三遇九曰九一七四三一 一亦从实末因之遇某数用某诀挨身一位起也 通曰法数有定者方可用此然止乘可用除则不尽也 乘除新法 归除诀曰进一空除原【实首多等于原数及少于半数者用此】进二空除倍【实首多等于倍数及少于半数者用此】进二随除倍【实首少于半数而倍数首一者用此】进五空除半【实首有余而原数首一者用此】进五随除半【实首多等于半数者用此】因乘诀曰除一空加原【实尾正一数者用此有时隔一位加原数】除二空加倍【实尾二三四数者用此有时隔一位加倍数】除二随加倍【实尾二三四数而倍数首一者用此】除五空加半【实尾五六七八数而原数首一者用此】除五随加半【实尾五六七八数者用此】 除式通曰有银八十七两二钱四分二厘四人分之以银八七二四二为实数以人四为原数加倍得八为倍数以人四折半得二为半数列定从左除起视实数左首多于倍数或等于倍数当用进二空除倍乃于实左空一位上二于实首除倍数八再视余实左首少于倍数或多等于原数当用进一空除原乃于实左空一位上一于余实首除原数四再视余实左首少于原数或多等于半数当用进五随除半乃于实左位上五不须空位于余实首除半数二再视余实左首少于半数亦当用进一空除原乃于实左位上一不须空位但于余实左首向右退一位除原数四再视余实首等于倍数当用进二空除倍再视余实首等于原数当用进一空除原再视余实等于半数当用进五随除半实数除尽毎人分得二十一两八钱一分零五毫此式先用进二空除倍次用进一空除原次用进五随除半余实首一二作一十二亦可用进二空除倍乃于余实左位上二不须空位但于余实左首向右退一位除倍数八次用进一空除原次又用进一空除原次用进五随除半亦合 乘还原式通曰以毎人分得银二一八一零五为实数其倍数原数半数俱如前不动从右乘起视实右尾过五以上当用除五随加半乃于实尾去五随下位加半数二不须空位再视余实尾止一数当用除一空加原乃于余实尾去一空一位加原数四再视余实尾过五当用除五随加半乃于余实尾去五随下位加半数二再视余实尾过二当用除二空加倍乃于余实尾去二空一位加倍数八再视余实尾止一数当用除一空加原乃于余实尾去一空一位加原数四再视余实尾止一数当用除一空加原乃于余实尾去一空一位加原数四再视余实满二当用除二空加倍乃于余实尾去二空一位加倍数八共得八十七两二钱四分二厘原首一数除式通曰有银四十五两六钱为实数一十二人分之为原数倍数二四半数六视实首多于倍数用进二空除倍再视余实多于原数用进一空除原再视余实多于倍数两倍以上而原首系一数此为实数有余当用进五空除半须空一位除之再视余实多于倍数当用进二空除倍再视余实等于原数当用进一空除原毎人分得三两八钱 乘还原式通曰以三八为实倍原半如前实尾过五系原首遇一者当用除五空加半余实尾过二用除二空加倍余实尾止一数用除一空加原余实尾过二用除二空加倍余实止一数用除一空加原共得四十五两六钱 倍首一数除式通曰有银四十一万三千三百二十六两二钱八分四厘为实数七千三百五十六人分之为原数倍数一四七一二半数三六七八实首多于半数用进五随除半余实首多于半数用进五随除半余实首多于原数用进一空除原余实首少于半数用进一空除原余实首多于半数用进五随除半余实首多于倍数系倍首遇一者当用进二随除倍不空位余实首少于半数用进一空除原余实首多于半数用进五随除半余实首多于倍数用进二随除倍余实等于倍数亦用进二随除倍毎人分得五十六两一钱八分九厘乘还原式通曰以五六一八九为实倍原半如前实尾过五用除五随加半余实尾过二系倍首遇一者当用除二随加倍不空位余实尾满二亦用除二随加倍余实尾过五用除五随加半余实尾过二用除二随加倍余实尾止一数用除一空加原余实尾又止一数用除一空加原余实尾过五用除五随加半余实尾止一数用除一空加原余实满五用除五随加半共得四十一万三千三百二十六两二钱八分四厘 附正珠乘除新法 以减代乘法 男正珠曰不用因乘而以减法代之数亦天然符合其术须变法数如一位法者作单数于十内减之余者为变数二位法者作防十防数于百内减之余者为变数三位法者作防百防十防数于千内减之余者为变数法既变后乃将变法与实呼减之呼实则自右向左呼法则自左向右逐位呼减减毕余实即为所求数也 因式 有一百二十人毎人二两问共若干曰二百四十两术珠曰先将法二于十内减之余八即八为变法也以变法八呼丑实二曰二八除十六乃于丑二内除一又当于寅位除六曰六退十还四丑空位寅存四再以变法 八呼子实一曰一八除八当于丑位除八曰八退十还二子位空丑存二逐位减毕即丑余之二寅余之四为所求二百四十两也 因乘式 有一百二十人毎人二两一钱问共若干曰二百五十二两术珠曰此二位法也将法二两一钱作二十一于百内减之余七十九为变法先以甲法七呼丑实二曰二七除一十四乙法九呼丑实二曰二九除一十八皆于丑实二内除之此如以丑二作二百先除一百四十后除一十八止存四十二也 故丑位空寅存四夘存二再以甲法七呼子实一曰一七除七乙法九呼子实一曰一九除九此如以子一作一百先除七十后除九也曰七退十还三子位空丑上三曰九退十还一丑存二上一于寅存四上为五夘仍存二逐位减毕即丑余之二寅余之五夘余之二为所求二百五十二两也 以加代除法 珠曰归除之法有可以加法代者更为易简其术亦须变法数与前因乘相同法既变后乃将归实暗数与变法呼加之暗数者视原法数在实内有防回也即用其防回之数为暗数耳以变法与暗数相呼加于实数之上逐位呼加加毕则其得数与归除无异也 归式 式一有银一百二十两二人分之问各若干曰六十两术珠曰先将法二于十内减之余八即八为变法也五一两数是为子丑两暗数子实一作一十内有五回原法二也丑 实二内有一回原法二也先以变法八呼子暗数五曰五八得四十乃于子实一上 加四为五再以变法八呼丑暗数一曰一八如八当于丑实二上加八数巳满十曰八退二进一十乃退去丑位二而于子位五进一为六逐位加毕视子位逓加之六即所求之分数为毎人各得六十两也式二有银一百二十两三人分之问各若干曰四十两术珠曰先将法三于十内减之余七即七为变法也三一两数是为子丑两暗数盖子实一十内有三回原法三余合丑实二为三内有一回原法三也先以变法七呼子暗数三曰三七二十一乃于子实一 上加二为三丑实二上加一为三再以变法七呼丑暗数一曰一七如七当于丑位三上加七数巳满十曰七退三进一十乃退去丑位三而于子位三进一为四逐位加毕视子位逓加之四即所求之分数为毎人各得四十两也 归除式 有银一百二十两二十四人分之问各若干曰五两术珠曰先将法二十四人作二十四于百内减之余七十六为变法五为暗数盖子实一作一百内有五回原甲法二十丑实二作二十内有五回原乙法四也此二位法先以变法甲七呼暗数五曰五七三十五乃于子一上加三为四丑二上加五为 七此法之首位加毕矣再以变法乙六呼暗数五曰五六得三十当于丑位七上加三数巳满十曰三退七进一十乃退去丑位七而于子位四上加一为五此法之次位加毕矣如是加毕则子位之五即所求之分数为毎人各得五两也 数度衍卷一 [book_title]卷二 钦定四库全书 数度衍卷二 桐城 方中通 撰 笔算上 加法 术曰列散数各横置以类相从【十从十百从百】大左小右自右并起零数纪本位下十进一位百进二位无零本位纪○诸位至左并毕即下纪数为所求总数也 进一位式有一万零六百五十四又八千九百零七又五万六千七百八十九又八百八十问共若干曰七万七千二百三十术先并单数四七九为二十此有十无 零也本位纪○进二于左次并十数 五八八及单数所进之二为二十三 本位纪三进二于左次并百数六九 七八及十数所进之二为三十二本 位纪二进三于左次并千数八六及 百数所进之三为一十七本位纪七进一于左次并万数一五及千数所进之一为七本位纪七合问 进二位式有散数如图所列问共若干曰二万三千七百五十二术先并单数为一百零二本位纪二进一于 左隔位此百进 二位也次并十 数为五本位纪 五次并百数及 单数所进之一 为一十七本位纪七进一于左次并千数及所进一为二十三本位纪三进二于左万无数即纪所进二合问通曰多层者截作两段三段为便如右试截上六层得总数一五六八一即将此数及下六层求得总数亦合 试加差法 术曰有九减七减二法九用见数而九减之七用实积数而七减之先减散数余若干次减总数余若干两余相比同则无差 九减式试第一式先减散数去○与九不入减并四七 五八八六七八八六一五共 为七十三九减余一【减去八九七十】 二列乂左次并总数三二七七共为 一十九九减余一【减去二九一十八】列乂右 左右相比数同无差 通曰此以见数为主不论千百位也 七减式试第一式散数首行之左一○作一十七减余 七减余一【减二七一】 【十四】次作一十四七减无余右下纪○次行左八九作八十九七减余五次作五十七减余一次作一十七七减余三右下纪三三行依法减余五四行依法减余五俱纪右下再以各行纪余○三五五并为十三七减余六乃以总数依法减之余六左右列比无差 减法 术曰多者列上为原数少者列下为减数所求数为减余从类列位自右减起下纪其余也下数多于上数者 为不足减上○而下有数者为无可减二者用借法式有二千七百一十五减四百零二问余若干曰二千三百一十三术原数列上减数列下减数首百从原数百下顺列单位五内减二余三抹去原数五本位纪三次十位一遇○无减本位仍纪一次百位七减四余三抹去原数七 本位纪三次千位二遇无减数本位仍纪一合问用借式有四千八百四十减二千五百九十二问余若干曰三千二百四十八术列原数减数单位○不能减二须借左原数一在本位作十减二余八下纪八次十位原数四因右借一存三不能减九借左原数一在本位作十并存三为十三减九余四下纪四次百位原数八因右借一 存七减五余二下纪二次千位四减二余二下纪二合问 用借用还式数如前式术单位○不能减二借左原数一在本位作十减二余八乃于十位减数九加一作十以还借数四不能减十借左原数一在本位作十并四为十四减十余四百位减数五加一作六以还借数八内减六余二千位四减二余二亦合 左减式数如前式术通曰旧法自右起今易自左起千位四内减二余二抹去原数四减数二而变为二次百位八内减五余三八变为二次十位四不能减九于百位变三内退一三又变为二十位四上加十为十四减九余五四变为五次单位○不能减二于十 位变五内退一五又变为四单位○上作十减二余八○变为八此法较便 试减差法 术曰一用如法试之以减数并减余得原数或以减余减其原数应与所减数合又有九减七减二法如试加然但以减数及减余合为一处又如加之散数首行次行耳 用加法式试第一式以减数四百零二并减余二千三百一十三为二十七百一十五合原数无差 用减法式试第一式以减余二千三百一十三于原数二千七百一十五内减之余四百零二合减数无差九减式试第一式先并减数四二及减余二三一三共 为一十五九减余六次并原数 二七一五为一十五九减余六 左右列比无差 通曰九减用实积数亦可盖九数无往 不合故也 七减式试第一式先以减数之左四○作四十七减余五次作五十二七减余三又以减余之左二三作二十三七减余二次作二十一七减无余次三不足减仍余三俱纪右下乃以各数纪余之三二并为六不足减仍 作六再以原数之左二七 作二十七七减余六次作 六十一七减余五次作五十五七 减余六左右列比无差 乘法 术曰乘即因也用九因法上列原数【即实数】下列乘数【即法】数齐于右尾算即始右将下一位遍乘上诸位向左逐位纪所乘数于下尽下数乃止诸所纪为散数用加法得所求总数若定总首何数从乘数左首推至总数左首即知通曰凡以下乘上一数有二位左十右零右即本位也遇十有数而零亦有数者曰平【三四一十二四四一十六之类】本位纪零数左位纪十数遇十有数而零无数者曰足【五四得二十五八得四十之类】本位纪○而其数纪左位也遇十无数而零有数者曰如【一三如三二三如六之类】左位纪○而其数纪本位也旧法纪数每并为一令人难晓凡原尾有○而乘尾无○者虽○亦乘之以存其位乘尾有○而原尾无○者即自乘数之有数位乘起若上下尾与中或俱有○者亦须乘之以存位下数乘上○下○乘上数皆曰某○如○下○乘上○曰○○如○则本位左位俱纪○也 十因 式乘上下数不等少数尚未满十乘数而少数不及于乘上下数如以八乘九何以得七十二术九在十内少一纪一于九右八在十内少二纪二于八右是八九为乘上下数一二为少数也上九下八上下数不等也一不及九二不及八少数不及也以少数一二相乘得二纪下二未满十故曰未满十乘数也 又以右一斜减左八右二斜减左九俱余七数同下纪七故得七十二 又式乘上下数等少数未满十乘数而少数不及于乘上下数如以八乘八何以得六十四术上下俱八故曰上下数等八在十内少二右俱纪二相 乘得四下纪四左右上下斜减俱余六下纪六故得六十四 又式乘上下数等少数已满十乘数而少数反过于乘上下数如以三乘三何以得九术上下俱三三在十内少七右俱纪七相乘得四十九已有四十故曰已满十乘数也下纪九寄四于左左上下三各 加所寄四俱变为七然后左右上下斜减俱无余下纪○故得九 又式乘上下数不等少数满十乘数而少数不及于乘上下数如以六乘七何以得四十二术七在十内少三六在十内少四俱纪右相乘得一十二下纪二寄一于左左上七加一变为八下六加一变为七然后左右上下斜减俱余四下纪四故得四十二又 术三四乘得一十二将一悬于左待左右上下斜减俱余三乃并所悬之一为四亦合 通曰一二之乘得八九之乘是以小乘而得大乘也七七之乘得三三之乘是以大乘而得小乘也九因本乎十因即洛书之无十而藏十也 诸式 一位乘式有一百五十二人每人六两问共若干曰九百一十二两术列定自右乘起先以六乘二曰二六一十二此平也左位纪一本位纪二次以六乘五曰五六三十此足也左位纪三本位纪○次以六乘一曰一六如 六此如也左位纪○本位纪六所纪散数用加法合问乘数六是两推至总数首为百 多位乘而原数中有○式有四千六百零八人每人三百二十五两问共若干曰一百四十九万七千六百两术列数以五乘八曰五八四十以五乘○曰五○如○以五乘六曰五六三十以五乘四曰五四二十如法纪 之此五之徧乘也次以二乘八 曰二八一十六以二乘○曰二 ○如○以二乘六曰二六一十 二以二乘四曰二四如八如法 进位纪之此二之徧乘也次以 三乘八曰三八二十四以三乘 ○曰三○如○以三乘六曰三 六一十八以三乘四曰三四一十二如法又进位纪之此三之徧乘也用加法合问 原数尾有○式有六百人每人六两问共若干曰三千六百两术以六乘尾○曰六○如○次以六乘次○曰六○如○次以六乘六曰六六三十六此乘○以存位也推至总首为 千 乘数尾有○式有四十五人每人六十两问共若干曰二千七百两术乘数尾有○虽不必乘然一○为十二○为百不可不列位列后从六乘起可耳以六乘五曰五六三十以六乘四曰四六二十四推至总首为千 原数乘数尾俱有○式有六百人每人三百四十两问 共若干曰二十万零四千两术列定 先以四徧乘次以三徧乘得总数尾 三○便于定位 通曰加减乘除皆可易横 为直而乘用直觉便故附 于此至于诸○立法不得 不存熟则不用矣 试乘差法 术曰九减七减如前但左右列数多一互乘得数又减之余列上总数减余列下上下相比也不用散数九减式试第二式除○九外并原数四六八为一十八 九减无余列○于乂左并乘数 三二五为一十九减余一列乂 右以左右一与○乘曰一○如○无数列○于乂上并总数一四七六为一十八九减无余列○于乂下上下相比无 差 七减式试第四式原数如法减之余三列乂左乘数如法减之余四列乂右以左右三四乘得一十二七减余 五列上总数如法减之余五列 下上下相比无差 通曰九减用见数可去○九不用七减用实积数必存○九之位与数以便逐 位减至右末而止也 除法 术曰有实有法有用数实即原数列上法即除数列下用即所求分数也上下齐左从左起算下首少于上首者齐列下首多于上首者退位列之于右界格以法除实视法首于实内有防回即用防除之而纪其防除之数于格外为用数也原实变后即为余实存上次法乘用数除实尽法位而止又将法数退一位列下【一徧用数一徧退位与初列退位不同】再视法首于余实内有防回当用防除而又纪其防除之数于第一次用数之右次法又乘第二次用数除实也以法尾退至实尾齐右而止格外所纪为分数有余实亦当存之再除实尾数即用尾数推而知用数之首也 通曰以下除上凡除亦有二位左除十右除零右即本位本位上左有实者将左右两实作为防十防也左有实而右无实者作防十也左无实而右有实者为零数也若遇实数可以除此一徧而不足以除下徧者则知用数中当有零矣详后式 定列位 通曰其法有五不退者二退位者三与珠算无除説同盖不退者有可除之数也退者无可除之数也 诸式 退位式有三百四十二两九人分之问各若干曰三十 八两术法首九多于实首三当退位列法实首三四作三十四【退位故作防十防也】视三十四内有三回九当以三为用数纪格右以九乘三得二十七于三十四内除之抹去三变四为七次以法九退列余实七二作七十二内有八回九当以八为次用数纪首用数三右于余实内除八九七十二实尽俱抹去格右所纪三八即所求分数法 尾齐实尾两数则知用数尾八为两也 不退位及减用数式有八百五十五两四十五人分之问各若干曰一十九两术法首四少于实首八不退位实八即作八视八内有二回四当以二为用数但二四除实首八而次法二五除一十则无实可除遇此则减用数一止以一为用数一四除四一五除五次以法退列余实四○作四十视有九回四当以九为 次用数四九除三十六五九除四十五实尽合问用数中当有○式有七万六千零四十八两八人分之问各若干曰九千五百零六两术退位列法首用数该九八九除七十二又退位列法次用数该五五八除四十又退位列法八适至实之四下左无余实四不足除遇此则纪○以当一徧用数又退位列法次用数该六六八除四十八实尽合问 通曰前式格外用数用横列今易为直盖横 直俱可用也 实尾有○式有三百两六人分之问各若干曰五十两退位列法首用数五五六除三十纪五于格 右实数尽矣尚有余○乃退位列法次用数无数而纪○故知所得为五十两也 通曰视实尽后法尾去实尾尚空防位毎空一位加一○于用数之右亦合 实不尽式有六百五十三两五十八人分之问各若干曰一十一两【余实一十五两未分】又各二钱五分【余实五钱未分】术不退位列首用数该一 一五除五一八除八退位列法次用数该一一五除五一八除八法尾已齐实尾当暂止以察用尾为何数既知为两数余 实再除 术右式余实一十五两法当退位列用数该二二五除一十二八除一十六退位列法次用数该五五五除二十五五八除四十此用数首根前式用数尾下当是钱数也尚余实俟再除 通曰初列实时先于实右加○每加一○作降实尾一数【两降钱钱降分】即以○末为实尾较便 试除差法 术曰亦用九减七减其除毕无余实者将除数减余列左用数减余列右左右相乘减余列上原数减余列下相比其未尽实者于左右乘后并入余实减余列上原数减余列下比之若除实至半者亦以除数减余列左用数减余列右相乘又取本位【法尾止处】以前余实减余以并左右乘数再减余列上以抺过原数减余列下相比也 除无余九减式试第一式除数九九减无余左列○并 用数三八为一十一九减余二 右列二乘无数列○于乂上并 原数三四二为九九减无余列○于乂 上并原数三四二为九九减无余列○于乂下上下相比无差 除有余九减式试第五式并除数五八为一十三九减 余四左列四并用数一一 为二不足九减右即列二 乘得八又并余实一五为一十四 九减余五列上并原数六五三为一十四九减余五列下上下相比无差 除无余七减式试第一式除数九作九七减余二列左用数三八作三十八七减余三列右乘得六不足七减 即列六于上原数三四作三十 四七减余六次作六十二七减 余六列下上下相比无差 除有余七减式试第五式除数五八作五十八七减余二列左用数一一作一十一七减余四列右乘得八又 以余实一五作一十五七 减余一以此用一并左右 所乘八为九七减余二列上原数 六五作六十五七减余二次作二十三七减余二列下上下相比无差 半除试差式除数六五用数一三原数八六六三余实二一三 用九减并除数六五为一十一九减余二列左又并用数一三为四不足九减右即列四乘得八乃并法尾止处以前之余实二一为三不足九减即以此 三并左右所乘八为一十一 九减余二列上并原数抺去 三位之八六六为二十九减 余二列下上下相比无差 用七减除数六五作六十五七减余二列左用数一三作一十三七减余六列 右乘得一十二乃以法尾止处以前之余实二一作二十一七减无余与左右所乘数相并仍是一十二七减余五列上原数抺去之八六作八十六七减余二次作二十六七减余五列下上下相比无差 通曰试差之法独用九七何也盖十者数之穷也数穷则变十复为一故数始于一终于九九阳数也下九之阳数为七故七与九同用自七九而外或有合者于率不通不可立法所以加减试差用实积则无不可用见数则七与五不可也乘除试差用实积则亦无不可用见数则自九而外皆不可也若夫论除之余六与三之余同九是用九而六三可无用矣四与二之余同八是用八而四二之余可无用矣且八或可以试加减而或不可以试乘除亦不可用然则试差之法舍七与九又何所取用哉 命分法 术曰命分者一大防何已分防何命余者为防何分之防何也又曰所余之小防何再分防何命此得者为防何分之防何也 通曰第一术即防何原本之命比例法也第二术恰尽则可否则终不能尽也 式法数为母余数为子如实数八万七千二百四十八法数三百七十四法尾已齐实尾用数已得二三三尚有余实一○六当命为三百七十四分之一百零六也又式得数为子得数前位为母得数一位为十二位为百三位为千也如右式余实一○六先于六右加一○依法再除之得二又加一○再除之得八又加一○再除之得三凡三位乃千也当命为千分之二百八十三也 数度衍卷二 [book_title]卷三 [子部,天文算法类,算书之属,数度衍 钦定四库全书 数度术卷三 桐城 方中通 撰 笔算下 奇零列位法 术曰奇零者不尽数也加减乗除皆有奇零惟除为多耳以法命之曰几分之几除数为母列上零数为子列下 式有实四十六法七用数六除四十二尚余实四命之 曰七之四七列上四列下 通曰以母分子故以法为母子随母分故以实 为子 奇零别多寡法 术曰母同子异别在子子同母异别在母俱异者别在子母也 母同式奇零有二一曰七之三一曰七之四辨其孰多孰寡今母数等矣但据子数别之子多者为多子少者为少耳 子同式若子数相等母数不等者其母数小子数反大母数大子数反小如二分十之一得五三分十之一止得三三耳当以母数少 者为多 子母俱异式子数母数俱不等以彼此子母互乗得数各注其下较之其较有三一曰差逺一曰稍差一曰相同法皆一也 奇零约法 术曰约多者为少其法有三一用折半一用通数一用纽数纽数不得则不可复约矣只就见数较多寡用彼此互乘之法 折半式十六之八约之为少折母数十六为八折子数八为四 约为八之四再折半又约为四之 二 通数式四十八之三十六欲约之视子母两数有何数相乗而得其数即通数也今以六为通数 以六乘八得四十八母可约为八以六乘六得三十六子可约为六 纽数式以小减大减尽而止以最后减尽数为纽数以除子母二数得约数也四十八内减三十二余十六又于三十二内减十六两次减尽是十六为 纽数矣以十六除四十八得三约母为三以十六除三十二得二约子为二 通曰纽即通也但通可见而纽不见耳今以十六为通数以三乗之得四十八以二乗之得三十二亦合 奇零并母子法 术曰凡两子母数先并母较之使两母数等以两母相乘得共母数次以两母互乘两子得各子数或三四母子不同并较多寡者亦以各母次第叠乗并一共母为实乃以各母数为各法除之即以各子数乗各所除数得各子数也 两母子相并式甲三之二乙四之三欲并一共母以两母乘得十二为共母数以甲子二乘乙母四得八为甲并子以乙子三乘甲母 三得九为乙并子 四母子相并式甲二之一乙三之二丙四之三丁五之一欲并一共母以甲母二乘乙母三得六又以六乘丙母四得二十四又以二十四乗丁母五得一百二十为共母以甲母二除共母得六十以甲子一乗之得六十为甲并子以乙母三除共母得四十以乙子二 乗之得八十为乙并子以丙母四除共母得三十以丙子三乗之得九十为丙并子以丁母五除共母得二十四以丁子一乗之得二十四为丁并子 倂母子用纽数式若母数相乗过有纽数可用即用纽数如甲母乗乙母得六嗣当与丙母四相乗有二为纽数可用【二与三乗得六二与二乗得四】则约甲乙相乗之六为三约丙母四为二乃复以甲乙相乗之六乗丙母所约之二得十二以丙母四乘甲乙所约之三得十二是甲乙丙母俱得十二数而止也至丁母无纽数即以十二 乘丁母五得六十则前式共母之一百二十今约为六十矣如法逐位母除子乗所得并子俱减前式之半 奇零累析约法 术曰奇零有析之又析者或三四析欲知其总用母乗母子乗子法三四位者母子俱湏叠乗也 二位析求总式七之四又五分四之三列自左向右七之四在左五之三在右两母乗得三十五两子乗得十二是总得三十五之一十二 也 四位析求总式二之一又六分一之一又四分一之三又三分三之二列自左向右算仍自右向左以丁母三乗丙母四得十二又以十二乗乙母六得七十二又以七十二乗甲母二得一百四十四为总母以丁 子二乗丙子三得六以六乗乙子一得六以六乗甲子一得六为总子是总为一百四十四之六也 化法 术曰凡整数后带奇零欲将整数尽依母数化之以母数乘整数以乗得数入子数却以母数除之有零无零两化俱合 化整为零式有整六又零五分一之三列六于左列五之三于右以母五乗整六得三十并子数三为三十三是化为五之三十三也 零数归整无零式七之五十六欲归为整以母数除子 数用八除尽知是八为整数也 零数归整有零式九之四十七欲归为整以母除子用五除于子四十七内除五九四十五尚余二知是整五又零九之二也 奇零加法 术曰两零数以至多零数及整与零数欲并为一者同母则一母可代众母异母则湏叠乗为共母也子不拘同异皆并为一遇有纽数者用纽数求其共母两位者子母互乘以求并子位多者母除子乘以求并子同母之子惟并而已异母之子湏求并子而并也其整与零并先并整次并零合为一曰积 同母式曰七之五曰七之六欲并为一同母七即用为 共母两子并得十一为共子积为 七之一十一归得一零七之四 异母式两母不同乘得十二为共母甲子乘乙母得八 为甲并子乙子乘甲母得九为 乙并子再以两并子并得十七 积为一十二之一十七 异母位多式以甲母七乘乙母十三得九十一再乘丙 母十一得一千零一为共母依 法各母除各子乘得各并子又 并得共子积为一千零一之二 千六百九十二 一整一零并式零曰五之三整曰八倂为一仍以整为整零为零即为八又零五之三也 二整一零并式零曰三之二整曰四曰八并为一先倂两整得一十二零数止一位无倂积为一十二又零三之二也 整与同母二零倂式零曰七之二曰七之六整曰八曰四先倂两整得十二次并两子得八同母七即为共母积为一十二又零七之八也 整与异母二零并式零曰三之二曰四之三整曰八整数无并两母乘得十二为共母左右母子互乘右子得八左子得九为倂子再并得十七积为八又零十二之十七也 试加差法 通曰加用减试用加试皆有同母异母之分 试同母式以右子五减积子十一余六合左子数以左子六减积子十一余五合右子数合则无差 试异母式先试母以右母三除共母十二得四合左母 数以左母四除共母十二得三 合右母数无差次试子以右并 子八减积子十七余九合左并子数以左并子九减积子十七余八合右并子数又以左母四除右并子八得二合右子数以右母三除左并子九得三合左子数无差 奇零减法 术曰先审多寡多为原数少为减数同母止就子数相减异母先求共母又母除子乘求各子乃以相减也通曰多中减少即右内减左也但并母子数有时似少中减多者而化整之后仍是多中减少也 同母式曰十七之八曰十七之五相减此当于十七之 八内减十七之五也同母止于右子 八内减左子五余三得十七之三 异母式曰九之八曰三之二相减先以两母乘得二十 七为共母乃母除子乘得各 子审多寡然后相减余二十 七之六 整数内减零数式整一十内减零一十一之六先于整内抽出一数依零母数化为一十一作化子整止存九是化为一十一之一十一也于化内减十一之六余十 一之五是减余为九零十一之 五 整内减整及零式两整先减十内减四余六乃于六中 抽一依零母化五为子是化为 五之五也于化内减五之三余 五之二其余整六既抽一止存五是减余为五零五之二 整及零内减整及零式整数多者为原数先以两整相 减十内减六余四此乃 异母以两母乘得八为 共母乃子母互乘为子以右子一乘左母四得四为右并子以左子三乘右母二得六为左并子当于八之四内减八之六然四少六多不能减湏于既减之余整四内抽出一数以共母化为八又并右并子四为十二化为八之十二于此内减去八之六余八之六整数止存三是减余为三零八之六 整及零内减零式整数不动乃并母子以两母乘得三百六十三为共母母子互乘右得十一为并子左得一百三十二为并子当于右内减左而右并子少乃于整九内抽出一数依共母化为三百六十三并入右并子十一为三百七十四乃于此内减右并母子余三百六 十三之二百四十二整 九止存八是减余为八 零三百六十三之二百 四十二【可约为八零三之二】 通曰乘除内用加减加减内亦用乘除故四法通而一法通也 试减差法 试同母式以减余子三并入左子五为八合右子即以减余子三于右子八内 减之余五亦合左子无差 试异母式以减余二十七之六与左三之二相加合右九之八此两母乘得八十一为共母以减余子乘左母得十八乘右母得五十 四再并为七十二得八十一之七十二约之为九之八 奇零乘法 术曰两零相乘当以母乘母子乘子零与整乘则置整数与零并列而整数上立一数为母与零母并列依母乘母子乘子之法也其不止一整者或俱有带零者法详后 零与零乘式四之三与三之二相乘以两母乘得十二为乘母两子乘得六为乘子是乘为一十二之六 零与整乘式五之四与整八相乘乃以八上立一为母 作一之八与五之四并列依法乘 得五之三十二通曰但以整数乘 零数之子为乘子可也 整带零与整乘式整三零六之五与整八相乘先以右 整三与母六乘得十八并子五 得二十三为子化为六之二十 三以左整八上立一为母并列依法乘得六之一百八十四 整带零与零乘式四零三之二与二之一相乘依法右 位整乘母得十二并子二得十 四为三之十四与左零数并列 乘得六之十四 整带零与整带零乘式四零二之一与三零五之一相 乘依法整三与母五乘得十五 并子一得十六左为五之十六 整四与母二乘得八并子一得九右为二之九并列乘得一十之一百四十四 通曰奇零与常法不同常法皆乘少为多今或乘多为少葢借用虚数实非乘多为少也 试乘差法 通曰乘用除试除用乘试葢奇零试差皆彼此还原也式以前零与零乘式试之以乘得十二之六为原数以 其两相乘之数皆为 除数但湏倒位前曰 三之二今曰二之三前曰四之三今曰三之四乃以除数右母二乘原母十二得二十四以除数右子三乘原子六得十八是为二十四之十八约为四之三而合上左其左位依法还原为三十六之二十四约为三之二亦合上右 奇零除法 术曰两零相除右列原数左列除数却将除数倒列子母而与原数并列亦用母乘母子乘子之法乘出数即除出数也 零除零式二之一为实列右六之一为法列左倒为一 之六乃与二之一并列母乘母 子乘子即得除出数为二之六 也 零除整式整六为实三之二为法法倒为二之三实立 一为母作一之六乃并列相乘得 除出数 通曰乘除本互用于此可见 整带零除整式六为实四零三之二为法以母三乘整 四为十二并子二为十四 化为三之十四再用零除 整法得除数 整除零式三之二为实整六为法以六上立一为母又 倒为六之一与三之二并列乘得 除数 整除整带零式六零二之一为实三为法以整六乘母 二得十二并子一得十三化为二 之十三整三立母倒位并列乘之 整带零除零式三之二为实六零二之一为法以整六 乘母二得十二并子一得 十三化为二之十三倒位 乘之 零除整带零式六零二之一为实四之三为法以整六 乘母二并子一得十三化为二之 十三倒法位乘之 整带零除整带零式六零二之一为实三零五之二为 法依法实化为二之十三 法化为五之十七倒法位 乘之 试除差法 式以前零除零式试之以乘得二之六列右除数六之 一列左母乘母子乘子 得十二之六约为二之 一合右原数无差 重零除尽法 术曰归除不尽曰奇零然有原数内本来先带奇零者是大奇数内又有小奇数也若欲除之使尽当先归之使一列小奇于右列大奇于左两母相乘为总母又以小奇母乘大奇子并入小奇子为共子此即是除尽之数 大奇内有小奇式四人分一十五零三之二其不尽者整三零三之二也三之二为小奇四之三为大奇两母乘得十二为共母小奇 母乘大奇子得九并小奇子二为十一作共子是一十二之一十一为除尽数也 大奇内小奇有小奇式若小奇内复有小奇至三至四 者如 七除 不尽 而余 四数为七之四而又以此四中之一剖为五停之二又以二中之一剖为四停之三又以三中之一剖为三停之二此乃大奇内带三小奇也先并大次两母五七乘得三十五为母以次母五乘大奇子四得二十并入次子二得二十二为子是为三十五之二十二再并三奇以母三十五乘三奇母四得一百四十为母以三奇母四乘大次并子二十二得八十八并三奇子三得九十一为子是为一百四十之九十一再并四奇以母一百四十乘四奇母三得四百二十为母以四奇母三乘大次三并子九十一得二百七十三并四奇子二得二百七十五为子是为四百二十之二百七十五此即通并即除尽数也可约为八十四之五十五 大奇内有小奇用加除二法式凡大奇一位小奇止一 位者当用加除二法而前式葢防法也如第一式大奇四之三小奇三之二先用除法以小奇三之二列右止以大奇母四列左立一为母倒位并列乘得十二之二【此用整除零法】后用加法以除出之十二之二列右以大奇四之三列左两母相乘得四十八为共母或母除子乘求子或母子互乘求子右子得八左子得三十六并得四十四是积为四十八之四十四也【此用异母加法】约得一十二之一十一而合除尽数矣 附铺地锦 乘式有物二十三件每件价银五钱六分五厘问共若 干曰一十二两九钱九分五厘术 物数为实列上价数为法列旁相 呼填数于格内呼毕斜格成总也 先呼三五一十五次呼三六一十 八次呼三五一十五填三下之格内后呼二五得一十二六一十二二五得一十填二下之格内乃斜取总数一为一十一一为二两五一二一为九钱八一为九分五为五厘也 除式有银九十四两五钱买物七十斤问每斤若干曰 一两三钱五分术先画图置银数于内为实以物数为法自下左旋而上而右止用珠算归除诀先除九十起曰逄七进一十填在左图右格为一两又曰七二下加六次除四两因加六作十曰逄七进一十将此一并九十图内存二作三填在九十图左格为三钱又曰七三四余二次除五分因加二作七曰逄七进一十将此一并四两图内作四又作五填在四两图右格为五分共得一两三钱五分也 洛书算 通曰洛书用九八卦旋中加升减降法异理同九内易位越十移宫过去未来用之无穷 加式有四钱五分又三钱四分又三两五钱问共若干曰四两二钱九分术每图用棋子一枚先呼四钱五分将钱图棋子置四上分图棋子置五上又呼三钱四分将钱图四上棋子移置七上【四加三】分图五上棋子移置九上【五加四】又呼三两五钱将两图棋子置三上却以钱图七上棋子加五成一十二移置本图二上而两图三上棋子加一成四移置四上乃视各图棋子所在为总数也 减式先将总数棋子照图安置逐呼逐减即得 通曰又有一笔锦之法似笔算而叠改不同又有一掌金之法五指每指九位分三行自下而上曰一二三又自上而下曰四五六又自下而上曰七八九临算暗记殊觉可笑即铺地锦乘尚似筹而除则不可用矣惟洛书算为便并列图数而求之虽乘除亦可得也 数度衍卷三 [book_title]卷四 钦定四库全书 数度衍卷四 桐城 方中通 撰 筹算 九筹 通曰珠算笔算皆有数而后乘筹算无数而先乘也故乘以筹为防数尽九九除亦因乘故随时施用所遇数更而先乘之数亦变多寡前后相合自成至若零筹无又无用之用也 开方筹 通曰筹有二曰平方自乘之还原也故用自乘之数曰 立方自乘再乘之还原也故用自乘再乘之数 乘法 术曰有实有法先将实数查筹从左向右齐列其两筹每格平行线斜方形合成一位并为一数矣次以筹之格为法数如法数是五即查第五格也若法有二位先查法尾所得数横列之次查法首所得数进一位横列之再用笔算加法得所求数 一位法式有五十九人每人八两问共若干曰四百七 十二两 以五十九人为实八 两为法先依实数查第五筹第 九筹五左九右并列次依法八查第八格内横数曰二曰七○曰四去○不用自左向右横视之得四百七十二两也得数尾与法尾数同故知为两 二位法式有五十四人每人六十四两问共若干曰三千四百五十六两 以五十四人为实六十四两为法 依实查五四两筹齐列先依法 尾四查第四格曰六曰一○曰 二自右向左横列之次依法首六查第六格曰四曰二○曰三进一位横列之用笔算加法得三千四百五十六两也多位法者视此每查格一回进一位列数 通曰九格内凡遇右尾有○者必湏列之以存位其○在数中者説详后式 筹内斜方有○无数式有五十四人每人二十八两问 共若干曰一千五 百一十二两 以 五十四人为实查筹并列二十八两为法先查八格曰二曰三○曰四横列之次查二格 曰八曰○曰一进一位列之加得合问 通曰斜方之中有数有○则去○不用若无数有○则湏存之以定位如八格去○列三二格列○存位是也筹内斜方倂数进十式有八十七人每人六两问共若 干曰五百二十二两 以八十七人为实查筹 并列六两为法查六格曰二曰四八曰四其曰四 八者并为十二本位存二以十进位作一其曰四者并所进之一为五当自右向左列曰二二五矣 用零筹式有六百零八人每人三十四两问共若干曰 二万零六百七十 二两 以六百零 八人为实查六筹 零筹八筹并列三十四两为法先查四格曰二曰三○曰四曰二横列之次查三格曰四 曰二○曰八曰一进一位列之加得合问 通曰实数整几十者列一零筹于右整几百者列二零筹于右以定位也 除法 术曰有实有法有商别列实数以法数依号查筹从左向右齐列于诸筹九格内查横行数之等于实数或略少于实数者在第几格即是初商数如在第一格即一为初商也次以查得之数减其实数已尽则止一商如未尽则有再商即再查横行内数之等于存实或略少于存实者在第几格即是再商数又以查得之数减其存实如前又未尽则更有三商倘初商已除实虽未尽而次位无实则商有○位即作○以当次商再以存实于格内查之若至余实数少于法数是为不尽法当命分之 一位商式有三百二十五两六十五人分之问各若干曰五两术别列三百二十五两为实以六十五人为法 查六五两筹左右齐列 查九格内何格数与实 相等一格至四格皆少五格内自左向右曰三二 五适等即五为商数矣 二位商式有三千三百二十五两九十五人分之问各 若干曰三十五两术 列三千三百二十五 两为实九十五人为法列筹二筹横数止三位湏截实左三位曰三三二作三 百三十二于格内查之至三格自左向右曰二八五【中位一七并八】作二百八十五略少于实数四格则多矣用三爲初商相减余四十七再以余实四七及截外之五作四百七十五查至五格四七【二五并七】五适等用五爲次商 商当有○式有三十二万三千八百七十六两五百三十八人分之问各若干曰六百零二两术列实查筹三筹横数止四位截实左四位曰三二三八作三千一一百三十八查一至六格自左向右曰三二二八作 三千二百二十八略 少于实数七格则多 矣用六爲初商相减 余一十以余实一○及截七六作 一千零七十六此乃次位无实也 次商当作○竟不除实余实仍是一千零 七十六查至二格一○七六?等用二爲三商 通曰次位三位俱无实者卽一连两商皆当作○也实不尽式有三千三百三十六两九十五人分之问各 若干曰三十五两 余实一十一两 列实查筹二筹横数止三位截实左 三位曰三三三查至三格自左向右 曰二八五略少于实数用三为初商相减余四八以余实四八及截外六作四八六查至五格四七五略少于余实用五为次商相减尚余一十一为不尽数也 开平方法 术曰有积数【即实数】有商数商有方法有亷法隅法置积数从末位下作防向左隔一位作一防有一防知有一商也视平方筹内自乘之数与实相等或略少者取以除实但自左一防为始防前无位则自乘止于零数防前有位则自乘应有十数而此乘数在筹内第几格即用其格数为初商也有二防者以初商倍之乃以倍数查筹列于平方筹之左再视诸筹横行内数与存实相等者用以除实而此数在几格即用为次商也实不尽者以法命之或实右加○再开之详少广章 通曰开方有实无法故用方廉隅以代之初商积与次商隅积皆自乘数也次商亷积之数处初商与隅积之问也 第一?求初商之根为方法乙为 方积也不尽求二防之商倍初商 根为廉法甲丙两长邉也隅法丁 方一角也此甲乙丙丁为平方二 商之形如三商则加戊巳亷及庚 隅也 式有积三万二千○四十一平方开之问邉得若干曰 一百七十九 别列积为实从 末位一下作防 向左隔一位○ 下作?三下作 防共得三防知商有三位 也防左无实三作零数视 方筹内自乘无三近少为 一平行取一为方法为初 商乃于实三内减去一格 自乘之一存二以共次防 实曰二二○为余实次倍初商根得二为亷法【倍一为二】取二号筹列方筹之左于两筹横行内求二二○无则用近少者一八九在第七格即七为次商为隅法乃以一 八九减余实二二○余三 一以共三防之实曰三一 四一为次余实再倍初次 两商之一七得三四【初商一作】 【一十次商七共为十七倍为三十四】为次廉法乃去次商所列之第二筹又取三号四号两筹自左向右俱列方筹之左于横行内求三一四一在第九格即九为三商为次隅法减实无余即三次所商为平方邉一百七十九也 开立方法 术曰有积数有商数商有方法有平廉法长亷法隅法置积为实从末位作防向左隔二位作防每一防有一商视立方筹内再乘之数有与实相等或近少者用以除实也但自左一防为始防前无位则再乘止于零数防前有一位则再乘应有十数防前有二位则再乘应有百数而此乘数在第几格即用作初商也有二防者以初商自乘而三倍之为平亷法以初商三倍之为长亷法却以平亷法数查筹列立方筹左以长亷法数查筹列立方筹右乃视左筹与方筹之横行内数查其或等或少于余实者取格数为约数即以此为次商以次商自乘之数与长亷法数相乘进一位书于约数之下以此二数并之除其余实即得立方邉也不尽者依法命之详少广章 其一作六面方体诸面线角皆相等 此名方法体成甲乙丙丁形 通曰此初商形也凡边皆初商之 数 其二作六面扁方体其上下面各与 方法等旁四面之高少于方法之高 而四棱线皆等此名平亷法体成戊 己庚辛形 其三作六面长方体其上下左右四 面与平廉之旁面等两端之四界线 皆与平廉之高等此名长廉法体成 壬癸形 其四作六面小立方体六面之广袤皆与长廉之两端等此名隅法体成子丑形 通曰右三形皆次商形也三四商者亦如此三形増之通曰初商方根次商上加一平廉左加一平廉后加一平廉故三倍初商之自乘为平廉法也上与后之边齐右加一长廉上与左之边齐前加一长廉左与后之边 齐下加一长廉故三倍初商为长廉法也上与左与后三角加隅法而立方形成矣 式有积九百一十二万九千三百二十九立方开之问边得若干曰二百零九术别列积数为实从末位九下 作防向左隔二位 作?凡三防知商 有三位也防前无 实则实首九为零 数视立方筹内再 乘之数无九三格 二七过实用二格 八实之近少数也 即取二为方法为 初商九内减八存一以 共次?之实曰一一二 九为余实将初商二自 乘得四又三倍得十二 为平廉法取一号二号 两筹列方筹左又将初 商二三倍得六为长廉 法取六号筹列方筹右 乃于立方与平廉共三筹 内之横行数取其少于余实者为约数视筹内无近少数即第一格之一二○一亦多于余实之一一二九遇此则知商有○位矣竟于初商下作○以当次商而实数不动复开第三防之实一一二九三二九将初次两商之二○【此作二十】自乘之得四○○【此作四百】又三倍之得一二○○【此作一千二百】为次平廉法乃取一号二号○号○号之四筹列方筹左而去次商所列之平廉两筹又将初次两商之二○【此作二十】三倍之得六○【此作六十】为次长廉法取六号○号两筹列方筹右而去次商所列之长廉筹 乃于立方与次平廉共 五筹内之横行数取其 少于余实者为约数至 第九格曰一○八○七 二九另列之向立方筹 右平行取九格之自乗 数八十一以乗次长廉 六○【此作六十】得四八六○ 【此八十一回六十也】进一位列约 余实之一 一二九三二九恰尽乃以约数之格数九爲二商也三次所商曰二曰○曰九是爲立方根二百零九也 通曰长亷筹止用其号数格内诸数皆无用卽不列筹而止列数亦可开方宜入少广章因有此二筹故立式于此 数度衍卷四 [book_title]卷五 钦定四库全书 数度衍卷五 桐城 方中通 撰 尺算 法尺 通曰法尺之式上连下分下则可开可合上则相对不 移如此乃可为法 实尺 两尺分寸湏等不可稍 异作一法尺二实尺 通曰两端变为三角因参知两勾股矩度直景倒景盖同一源加实尺于法尺之上谓之三角可也谓之勾股可也 乘法 术曰先定实数法数与他算不同既定乃以法数作法尺何数实数作实尺何数或寸或分又湏预定然后将实尺比照实数横安于法尺之一分或一寸上令法尺开而就之随量法尺之法数空处得何数即为所求数也 通曰变通升降其用始广如实尺数大不便安放者湏降实数寸降为分分降为厘或将实数折半法实俱大必湏俱折先降后升先半后倍得数原无异也或用升法以代降实 式有五人每人四两问共若干曰二十两术以四两为 四分作实数以五 人为五寸作法数 将实尺比定四分 横安于法尺一寸 空处乃量法尺五寸空处得何数今得二寸因以分为两则寸即为十故知所得二寸为二十两也 降数式有五十九人每人八两问共若干曰四百七十二两术以八两为八分作实数以五十九人作五寸九分为法数用实尺比定八分安于法尺一分上八大一 小不可安放乃降 十倍安于法尺一 寸空处量法尺五 寸九分空处得四 寸七分二厘先降后升应升为四尺七寸二分原以分为两故知所得为四百七十二两也【此系升法以代降实】 实数折半式有八人每人一十二两问共若干曰九十六两术以八人作八寸为法以一十二两折半得六两作六分为实用实尺比定六分安于法尺一寸空处量 法尺八寸空处得 四寸八分原以分 为两是为四十八 两先半后倍倍得 九十六两也 法实俱折半式有一十六人每人一十二两问共若干曰一百九十二两术以一十六人折半得八人作八寸为法以一十二两折半得六两作六分为实用实尺比定六分安于法尺一寸空处量法尺八寸空处得四寸 八分以分为两是 为四十八两倍之 得九十六两再倍 之得一百九十二 两合问 通曰因法实俱折半故加倍以还实再加一倍以还法也 实数再折式有八人每人二十四两问共若干曰一百九十二两术以八人作八寸为法以二十四两折半得 一十二两又折半 为六两作六分为 实用实尺比定六 分安于法尺一寸 空处量法尺八寸空处得四寸八分以分为两是为四十八两倍之得九十六两再倍之得一百九十二两合问 通曰再折故再倍或将实三分之得数三乘之亦合法实俱再折式有三十二人每人二十四两问共若干曰七百六十八两术以三十二人折半得一十六人又 折半得八人作八 寸为法以二十四 两折半得一十二 两又折半得六两 作六分为实用实尺比定六分安于法尺一寸空处量法尺八寸空处得四寸八分以分为两是为四十八两倍之得九十六两再倍之得一百九十二两再倍之得三百八十四两再倍之得七百六十八两合问 通曰四其折半故四其加倍如以四自乘得十六又乗四十八亦合 整零截量式有二十四人每人五钱三分问共若干曰一十二两七钱二分术以二十四人作法尺二寸四分以五钱三分作实尺五分三厘先截整数二十人求之 将实尺比定五分 三厘安于法尺一 分空处实大不便 安顿降之安于法 尺一寸空处将五分三厘升作五寸三分此为十人所得数倍之得十寸六分便是二十人所得数也后截零数四人求之量法尺四分空处得二分一厘二毫亦升作二寸一分二厘便是四人所得数并两得数得十二寸七分二厘为二十四人所得总数也因以尺之厘为 银之分故知爲十 二两七钱二分又术 以二十四人作法尺 二尺四寸以五钱三 分作实尺五分三厘将实尺比定五分三厘安于法尺一寸空处量法尺十寸空处得五寸三分倍之得一尺○六分爲二十人所得数又于法尺四寸空处量得二寸一分二厘并得一尺二寸七分二厘亦合 通曰所截爲二十人故加倍若三十人则用三乗四十人则用四乗也 除法 术曰法实数定之后将实尺比定实数定于法尺之法数空处乃量法尺之一分或一寸空处得几何卽爲所求除出数也亦用降数折数二法或有实无法任意作几分者不论实数多寡将实尺比数安于法尺之百分空处用随分法量之 式有银二十二两四十四人分之问各若干曰五钱术以二十二两作二寸二分为实以四十四人作四寸四 分为法将实尺比 定二寸二分安于 法尺四寸四分空 处乃量法尺之一 分空处得几何今得五厘因以尺之分为银之两则厘当为钱又因以分为人则五钱为一人所得数也通曰量一寸空处得五分降为五厘亦合一分为一人一寸则为十人量四寸空处得四十人银数四分空处得四人银数此用乘以知除也 降数式有银四十四两二十二人分之问各若干曰二两术以四十四两作四寸四分为实以二十二人作二寸二分为法将实尺比定四寸四分安于法尺二寸二分上实大不可安顿降为四分四厘安于法尺二寸二 分空处乃量法尺 一分空处得二厘 因先降数此当升 为二分分为银之 两则知所得为二两也 折实式有一十八两六人分之问各若干曰三两术以一十八两折半得九两作九寸为实以六人作六寸为法将实尺比定九寸安于法尺六寸上实大降作九分安于法尺六寸空处乃量法尺一寸空处得一分五厘 因降实此当升为 一寸五分又因折 实此当倍为三寸 以寸为两故知一 人所得为三两也 法实俱折式有一十八两一十二人分之问各若干曰一两五钱术以一十八两折半得九两作九寸为实以一十二人折半得六人作六寸为法将实尺比定九寸安于法尺六寸上实大降作九分安于法尺六寸空处 乃量法尺一寸空 处得一分五厘因 降实当升为一寸 五分寸为两故知 一人所得为一两五钱也 通曰法实俱折者除与乘不同乘折则所得止半数故湏倍之除折则所得即所求数不必又倍矣葢折亦除故也 随分式有银八十两或四平分或五平分问各若干曰四分之一得二十两五分之一得一十六两术以八十 两作八十分为实 将实尺比定八十 分安于法尺百分 空处如欲作四平 分者则量法尺二寸五分空处得二十分每人即得二十两也如欲作五平分者则量法尺二寸空处得一十六分每人即得一十六两也 通曰四平分者先将四除十寸得二寸五分五平分者先将五除十寸得二寸 整零截量式有三十二两五人分之问各若干曰六两 四钱术以三十二 两作三尺二寸为 实以五人作五寸 为法先截实末二 寸求之将实尺比定二寸安于法尺五寸空处量法尺一寸空处得四分后截实首三尺求之将实尺比定三尺降作三寸安于法尺五寸空处量法尺一寸空处得六分应升为六寸并前四分得六寸四分以两为寸故知每人得六两四钱也 通曰后量法尺之十寸空处得六寸亦合此不升数而升度也 比例法 术曰有实数于此以某法数分之得某数今又有实于此照前分例求法几何将实尺比前实数安法尺之前法数上又将实尺比后实数于法尺空处上下推移求至脗合处视法尺之分寸几何即所求数也 通曰比例无穷不可尽举引而推之存乎其人 式有银四百四十两二百二十人分之人得二两今又有银八百八十两照前二两分数该人几何曰四百四十人术将二百二十人作二寸二分为法将四百四十 两作四寸四分为 实以实尺比定四 寸四分安于法尺 二寸二分上实大 降作四分四厘安于法尺二寸二分空处又将八百八十两作八寸八分亦降作八分八厘以实尺比定八分八厘于法尺空处上下推移至四寸四分空处适合以寸为百数即知为四百四十人矣 通曰前后俱降实故不升且前以人为法银为实后亦以银为实求出法数人降实则不升法也 又式有银三两给六人今又有银七两照前例应给几人曰一十四人术以三两作三寸爲法以六人作六分爲实将实尺比定六分安于法尺三寸空处乃量法尺七寸空处视得几何今得一寸四分以分爲人卽知所 得爲一十四人也 又术以三两作三 分爲实以六人作 六分爲法将实尺 比定三分安于法尺六分空处又将实尺比定七分在于法尺空处上下推移至法尺一寸四分空处适得脗合一寸四分卽一十四人也 通曰法实可互更乗除可互用此尺算之异于他算也凡求得数皆以比例卽乗除亦无非比例故比例以尺爲便 数度衍卷五 [book_title]卷六 钦定四库全书 数度衍卷六 桐城方中通撰 勾股【勾股之一】 周髀勾股圆方图 赵君乡注曰勾股各自乗并之为?实开方除之即?也【鸾曰勾三自乗得九股四自乗得十六并得二十五开方得五】按?图又可以勾股相乗为朱实二倍之为朱实四以勾股之差自相乗为中黄实【倍勾?差二为四自乗得一十六为左图中黄实也淳风曰干率不通】加差实亦成?实【加差实一并外矩青八得九又并中黄十六得二十五亦成?实也淳风曰于率不通唐寅曰加差实之一于前文所言朱实四之上朱实之四为二十四加一得二十五也】以差实减?实半其余以差为从法开方除之复得勾矣【以差实九减?实二十五余十六半之为八加差一得九开得勾三淳风曰以差实一减?实二十五余二十四半为十二以差一从开得勾三鸾言于率不通】加差于勾即股【加差一于勾三得四】凡并勾股之实 即成?实【勾实九股实十六并得二十五?实】或矩于内或方于外形诡而量均体殊而数齐勾实之矩以股?差为广股?并为袤【以差一为广股四并?五得九为袤左图外青】而股实方其里【左图中黄十六】减矩勾之实于?实开其余即股【减九于二十五余十六】倍股在两边为从法开矩勾之角即股?差【倍股四为八为从开九得一也】加股为?【加差一于股四得五】以差除勾实得股?并【以一除九得九即股四?五并数】以并除勾实亦得股?差【以九除九得一】令并自乗与勾实为实【九自乗得八十一又加九得九十】倍并为法【倍九为十八】所得亦?【以十八除九十得五】勾实减并自乗加法为股【以九减八十一余七十二以十八除之得四】股实之矩以勾?差为广勾?并为袤【以差二为广勾三并?五得八为袤】而勾实方其里【右图中青九】减矩股之实于?实开其余即勾【减十六于二十五余九】倍勾在两边为从法开矩股之角即勾?差【倍勾三为六为从开十六得二也】加勾为?【加差二于勾三得五】以差除股实得勾?并【以二除十六得八即勾三?五并数】以并除股实亦得勾?差【以八除十六得二】令并自乗与股实为实【八自乗得六十四又加十六得八十】倍并为法【倍八得十六】所得亦?【以十六除八十得五】股实减并自乗如法为勾【以十六减六十四余四十八以十六除之得三】两差相乗倍而开之所得以股?差増之为勾【一与二乘得二倍为四开得二増一为三】以勾?差増之为股【以二増二得四】两差増之为?【二之上又增一与二得五】倍?实列勾股差实见?实者以图考之倍?实满外大方而多黄实黄实之多即勾股差实【倍二十五为五十满外大方之七七四十九而多一数即勾股差实也】以差实减之开其余得外大方大方之面即勾股并【以差实一减五十余四十九开得七即勾三股四并数】令并自乗倍?实乃减之开其余得中黄方黄方之面即勾股差【七自乗得四十九倍?实二十五为五十相减余一开之得勾股差】以差减并而半之为勾【以差一减七余六半得三】加差于并而半之为股【以差一加七得八半得四也】其倍?为广袤合【倍?二十五得五十为广袤合淳风曰倍?五得一十为广袤合鸾言错也唐寅曰勾广一袤九股广二袤八】而令勾股见者自乗为其实四实以减之开其余所得为差【以七七自乗得四十九四实大方勾股之中有四方一方之中有方十二四实有四十八减上四十九余一也开之得一即勾股差一淳风曰十自乗得一百四实者大方广袤之中有四方若据勾实而言一方之中有实九四实有三十六减上一百余六十四开之得八即广袤差此是股?差减股?并余数若据股实而言一方之中有实十六四实有六十四减上一百余三十六开之得六即广袤差此是勾股差减勾?并余数鸾言错也】以差减合半其余为广【以差一减合七余六半之得三广也淳风曰以差八六各减合十余二四半之得一与二也一即股?差二即勾?差以差减?即各袤广也鸾言错也】减广于?即所求也【以广三减?五即所求差二也淳风曰以广一与二各减?五即所求股四勾三也鸾言错也】观其迭相规矩共为反覆互与通分各有所得然则统叙羣伦?纪众理贯幽入微钩深致逺故曰其裁制万物唯所为之者也通曰君卿所注乃其互见甄鸾重述李淳风言其于率不通者有三错者有四鸾盖取其偶合耳大衍之数五十其用四十有九即此积矩之数也中黄太极一藏四用蓍之挂防也四十有八四象具焉蓍之用策也故七者勾股和也四十九者勾股和之自乗也四十有八者四其勾股之互乗也互乗十二勾股?亦十二以勾三除之得股以股四除之得勾以?五除之得勾股?之羃六此即半其互乗也四其二六是为八羃八羃有八卦之义焉羃六有六爻之义焉八其六爻是为四十八耳矩股之角四分股之一四角而成股羃矩勾之角四分勾之一四角而成勾羃?羃去中黄羃内外四角等是矩勾之四角三分损一而为?羃之一角?羃之一角三分损一而为矩股之一角也 ?容股股容勾图説 通曰方内之容递差于二九九之内容八八余为十七八八之内容七七余为十五七七之内容六六余为十三六六之内容五五余为十一五五之内容四四余为九四四之内容三三余为七三三之内容二二余为五二二之内容一一余为三是余之相降莫不差于二也则?实之容股实股实之容勾实七九之余所固然矣自?而推之?与勾股差并六实三十六其容?实之余较?容股实之余必増二矣?与勾?差并七实四十九其容?与勾股差并实之余较其并实容?之余必増二矣?与勾并八实六十四其容?与勾?差并实之余较其并实容?与勾股差之余必増二矣?与股并九实八十一其容?与勾并实之余较其并实容 ?与勾?差之余必増二矣自勾而降之勾?差二实四容于勾实之中其余较股之容勾必损二矣勾股差一实一容于勾?差实之中其余较勾之容勾?差必损二矣容有大小余无异同受容者变而容之者亦变故耳 勾股名义 勾【横也】股【直也】?【斜也】勾股较【勾股相减也】勾?较【勾?相减也】股?较【股?相减也】勾股和【勾与股并也】勾?和【勾与?和也】股?和【股与?并也】?较和【?与勾股较并也】?和和【?与勾股和并也】?和较【?与勾股和相减也】?较较【?与勾股较相减也】 勾股求?法 式甲乙股四乙丙勾三问甲丙?几何曰甲丙?五术股四自乘得十六勾三自乗得九两自乗数并之得二十五为实积用少广章 开平方法除之得边五即?也 又式木长二丈围之三尺葛生其下纒木七周上与木齐问葛长几何曰二丈九尺术以木长为勾围七周共二十一尺为股求葛长为?也 通曰勾股可互换然必以长者为股短者为勾也 勾?求股法 式乙丙勾三甲丙?五问甲乙股几何曰甲乙股四术勾三自乗得九?五自乗得二十五相减余十六平方开之得边四即股也 又式圆木径二尺五寸为板欲厚七寸问阔得几何曰二尺四寸术以圆径为?板厚为勾求阔为股也 通曰圜内切中径成两勾股也 股?求勾法 式甲乙股四甲丙?五问乙丙勾几何曰乙丙勾三术服四自乗得十六?五自乗得二十五相减余九平方开之得边三即勾也 又式台上方四丈高四丈八尺四隅袤叙五丈四尺四寸问下方几何曰九丈一尺二寸术以台高为股袤斜为?求勾以益上方斯得下方也【一隅袤斜者用此求之若四隅袤斜须于求勾倍之且隅与边尚有不同也】 又式圆池八分鱼吞钩钩沉在正中水底钩丝斜至岸长五十尺问水深几何曰三十尺术以半池径为股丝斜至岸为?先以亩法通池八分为一百九十二步四乗三除得二百五十六步平方开之得圆径十六步折半得八步通作四十尺为股次以股?求勾得水深也 勾与股?较求股?法 式乙丙勾二十七甲乙股甲丙?之较为丙丁九问甲乙股几何甲丙?几何曰甲乙股三十六甲丙?四十五术勾自乗得七百二十九较九除之得八十一为股?和和内减较余七十 二半之得三十六为股和外加较得九十半之得四十五为?二术勾自乗得七百二十九较自乗得八十一相减余六百四十八为实倍较得十八为法除实得三十六为股三术勾自乗较自乗并得八百一十为实倍较为法除之得四十五为? 第一术论曰勾羃为丙戊直角方形以较而一【即除也】为 丙巳直角形即得丙庚边与甲 乙甲丙股?和等何者甲丙? 羃之甲辛直角方形内当函一 股羃一勾幂试于甲辛形内依丙丁较截作丁辛丁癸癸壬三直角形即癸壬形与败羃等而丁辛丁癸两形并当与勾羃等亦与丙巳直角形等夫壬辛甲癸巳庚皆较也而甲丁与股等丙辛与?等即丙庚与股?和等 第二术论曰勾羃为乙巳直角方形较羃为丙丑直角方形与丙庚等相减存乙庚巳磬折形为实次倍丙丁较线为乙辛线以为法除实即得辛壬直角形与乙庚巳磬折形等而乙壬边与甲乙股等何者甲丙?羃之 甲癸直角方形内当函一勾羃一股 羃试于甲癸形内截取丙丑较羃之 外分作甲五丑癸丑子三直角形即 丑子与股羃等而丙丑甲丑丑癸三形并当与勾羃等次各减一相等之丙丑丙庚即甲丑丑癸并与乙庚巳磬折形等亦与辛壬直角形等辛乙与寅丑丑丁并等即乙壬与甲丁或寅癸等亦与甲乙等 通曰第三术勾羃为乙巳直角方形较羃为丙壬直角方形与丙庚等并为巳辛庚 磬折形为实次倍丙丁较线为辛巳线以为辛巳线以为法除实即得甲丙线也 又式池方一丈正中生葭出水一尺引葭至岸适与水面齐问水深几何曰一丈二尺术半池为勾出水一尺为股?较引葭至岸为?水深为股 又式开门去阃一尺两门不合二寸问门每扇广几何曰五尺零五分术去阃一尺为勾不合二寸半之为股?较门阃之半为股门广为?【门广并不合之半为?】 又式垣高一丈倚木齐垣木脚去本以画记之卧而过画一尺问画去墙几何曰四丈九尺五寸加过画一尺为木长术垣高为勾过画一尺为股?较木长为?画去墙为股 又式圆木锯深一寸道长一尺问木径几何曰二尺六寸术木径为?锯道为勾锯深为半股?较半勾自乗得二尺五寸半较除之又加半较 得径为? 通曰圆内截弧矢求圆径也甲丙与甲巳甲丁皆等丁居丙巳之中己乙为全较故丁戊为半较也【按此条图説有误处】 股与勾?较求勾?法 式甲乙股三十六乙丙勾甲丙?之较为甲丁十八问乙丙勾几何甲丙?几何曰乙丙勾二十七甲丙?四十五术股自乗得一千 二百九十六较除之得七十二为勾?和和内减较余五十四折半二十七为勾和外加较得九十折半四十五为? 通曰勾与股?较求股?之第二术第三术此亦可用第一术论曰股羃为甲巳直角方形以较而一为甲辛 直角形即得甲壬边与乙丙丙甲勾? 和等何者甲丙?羃之甲丑直角方形 内当函一股羃一勾羃试于甲丑形内 截取子卯丑辰边各与甲丁较线等 即卯丑辰丙俱与等乙丙勾之丁丙线等而作甲卯夘辰辰丁三直角形其辰丁形之四边皆与勾等勾羃也即甲夘夘辰两形当与股羃等亦当与甲辛形之甲壬边与勾?和等 第二术论曰股羃为甲戊直角方形较羃为丁庚直角 方形与辛癸等相减存甲壬戊磬折 形为实次倍甲丁较线为乙寅线以 为法除实即得乙子直角形与甲壬 戊磬折形等何者乙子直角形加一 等较羃之乙丑直角方形成子夘癸磬折形即与股羃之甲戊直角方形等也又何者甲丙?羃之甲辰直角方形内当函一勾羃一股羃试于甲辰形内截取丁庚较羃之外分作庚未未午午丁三直角形其甲庚申未酉戌三线各与甲丁较线等庚申未戌未辰午酉四线各与等乙丙勾之丁丙线等夫未酉酉戌并与勾等即申未未酉并亦与勾等而庚申未辰各与勾等即庚未未午两形并为勾羃而丁庚午丁两形并为股羃矣丁戌戍酉两较也乙夘夘寅亦两较也而丁丙与乙丙原等即丁午乙子两形等丁庚与乙丑两形又等即丁庚午丁并与子卯癸磬折形等而子夘癸磬折形与股羃之甲戊形等此两率者各减一等较羃之辛癸乙丑形即乙子直角形与甲壬戊磬折形等 通曰甲乙股羃之甲戊直角方形与甲丁较羃之丁庚直角方形并为巳癸卯磬折形也此第三术也 ?与勾股较求勾股法 式甲丙?四十五甲乙股乙丙勾之较为甲丁九问乙丙勾几何甲乙股几何曰乙丙勾二十七甲乙股三十六术?自乗得二千零 二十五倍之得四千零五十较自乗得八十一相减余三千九百六十九为实平方开之边得六十三为勾股和和外加较得七十二半之得三十六为股和内减较余五十四半之得二十七为勾二术较自乗得八十一折半得四十零五与?自乗二千零二十五相减余一千九百八十四五折半得九百九十二二五开平方边得三十一五减半较四五余二十七为勾三十一五加半较四五得三十六为股 第一术论曰?羃为甲戊直角方 形倍之为己丙直角形较羃为甲 庚直角方形与甲辛等相减即得 减甲辛形之己辛丙磬折形也今欲显己辛丙磬折形开方而得勾股和者试察甲丙上直角方形与甲乙乙丙上两直角方形并等即甲戊?羃内有一甲乙股羃一乙丙勾羃也己丙两?羃内有两甲乙羃两乙丙羃也故以己丙为实开方即得丑辰直角方形其丑寅与夘辰两形两股羃也丙壬与癸子两形两勾羃也而丑寅夘辰之间则重一等甲辛之夘寅形减之即丑辰直角方形与己辛丙磬折形等矣乙丙为勾丙丑与甲乙等故乙丑边即勾股和也若于乙丙勾加甲丁较即与甲乙股等故甲乙乙丙甲丁并半之为甲乙股以甲丁较减甲乙股为乙丙勾 通曰第二术较羃为甲辛直角方形 半之为甲戊直角形与甲庚直角形 等?羃为甲壬直角方形减较羃半 甲庚形得癸庚丙磬折形半之得癸 午未磬折形与辰子丙磬折形等而子未直角方形与甲午直角方形等也癸午未磬折形开方得丑寅直角方形与辰子丙磬折形开方得卯乙直角方形等也即得丑乙线与巳乙线等而丑丙线与甲巳线等即半较线也乙丑线内减等半较之丑丙线得乙丙勾己乙线外加半较甲巳线得甲乙股何者甲壬直角方形内函一丑寅直角方形一夘乙直角方形又一甲戊直角形故于甲壬直角方形内减等甲戊之甲庚直角形即得夘乙丑寅两直角方形也 勾与股?和求股?法 式乙丙勾二十七丙甲甲乙股?和八十一问甲乙股几何甲丙?几何曰甲乙股三十六甲丙?四十五术勾自乗得七百二十九 股?和八十一除之得九为股?较较加和八十一得九十半之得四十五为?较减和八十一余七十二半之得三十六为股二术勾自乗与和自乗六千五百六十一相减余五千八百三十二为实倍和得一百六十二为法除之得三十六为股三术勾和各自乗相并得七千二百九十为实倍和为法除之得四十五为?通曰第二术减余第三术并后若俱折半为实即以和为法可也不必倍和矣又勾自乗倍得一千四百五十八与和自乗相减余五千一百零三为实以和八十一除之得六十三为勾股和减勾余股以股减八十一余? 第一术形论同勾与股?较求股?第一术 通曰第二术以股?和作庚乙一直线自之为乙丁直角方形次用股?度相减取辛甲两点从辛从甲作辛壬甲癸两平行线依此法作戊子丑巳两平行线即丁乙一形内截成丑壬甲子庚寅辰卯股羃四戊午未巳甲寅辰壬较股矩内直角形四寅辰较羃一也 今欲于丁乙全形中减一乙丙勾之羃则于庚辰?羃内存庚寅股羃而减丑寅甲磬折形即勾羃矣何者庚辰?羃内当函一股羃一勾羃也又戊午与午癸等即辛癸形亦勾羃也以辛癸形代丑寅甲磬折形于丁乙全形内减之余庚壬甲夘两形并又半得甲夘形为实【倍法不如折实】以等股?和之乙夘线为法除之得甲乙股通曰第三术勾羃和羃并者即丁乙形外加一甲壬形也 又式竹高一丈折梢柱地去根三尺问折处高几何曰四尺又二十分尺之十一术竹高为股?和去根三尺为勾折处为股 股与勾?和求勾?法 式甲乙股三十六乙丙丙甲勾?和七十二问乙丙勾几何甲丙?几何曰乙丙勾二十七甲丙?四十五术股自乗得一千二百九 十六和七十二 ✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜未完待续>>>完整版请登录大玄妙门网✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜