[book_name]几何原本 [book_author]徐光启 [book_date]明代 [book_copyright]玄之又玄 謂之大玄=學海無涯君是岸=書山絕頂吾为峰=大玄古籍書店獨家出版 [book_type]天文地理,数学,完结 [book_length]103084 [book_dec]中国首部数学译著。共十五卷。前六卷为明徐光启与意大利传教士利玛窦合译,成书于1607年。后九卷为清李善兰与英国传教士伟烈亚力合译,成书于1858年。该书据克拉维斯的拉丁文本《欧几里得原本十五卷》译出。前六卷有基本概念、三角形、四边形、多边形、圆、比例线段、相似形等,几乎含现今平面几何的全部内容。这是一部翻译质量极高的译作,由于“几何”含有多少之意且与拉丁文Geometria之“Geo”音暗合,故名“几何原本”。在翻译中,作者“反复展转求合本书之意”,译名从无到有,边译边创,因而许多名词与术语如点、直线、曲线、平行线、角、面、三角形、四边形、相似、外切等译名十分贴切,不仅沿用至今而且影响到日本、朝鲜。书中从定义、公理出发,按形式逻辑编排内容的形式及演绎推理的证明方法为我国传统数学注入活力。作者自著《勾股义》就冀图以这种方法对古代勾股算术加以严格论证,其思想在杜知耕《数学钥》中也有明显反映。该书的问世为古典数学的发展和提高创造了条件。后九卷除含立体几何知识外,还包含辗转相除法,连比、不可公度量理论、初等数论等内容。翻译质量也很高,仍以“几何原本”命名。由于微积分同时传入,其影响不如前六卷。1865年曾国藩主持发行了全书完整的校订本,该书才得以全帧。 [book_img]Z_11138.jpg [book_title]提要 钦定四库全书     子部六 几何原本       天文算法类二【算书之属】提要 【臣】等谨案几何原本六卷西洋欧几里得撰利玛窦译而徐光啓所笔受也欧几里得未详何时人其原书十三卷五百余题利玛窦之师丁氏为之集解又续补二卷于后共为十五卷今止六卷者徐光啓自谓译受是书此其最要者也其书每卷有界説有公论有设题界説者先取所用名目解説之公论者举其不可疑之理设题则据所欲言之理次第设之先其易者次其难者由浅而深由简而繁推之至于无以复加而后已又每题有法有解有论有系法言题用解述题意论则发明其所以然之理系则又有旁通者焉卷一论三角形卷二论线卷三论圆卷四论圆内外形卷五卷六俱论比例其余三角方圆边线面积体积比例变化相生之义无不曲折尽显纎防毕露光啓序称其穷方圆平直之情尽规矩准绳之用非虚语也且此为欧逻巴算学専书前作后述不絶于世至欧几里得而为是书盖亦集诸家之成故自始至终毫无疵纇加以光啓反覆推阐其文句尤为明显以是弁冕西术不为过矣乾隆四十六年十二月恭校上 总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅 总 校 官 【臣】 陆 费 墀 [book_title]几何原本序 唐虞之世自羲和治厯暨司后稷工虞典乐五官者非度数不为功周官六艺数与防一焉而五艺者不以度数从事亦不得工也襄旷之于音般墨之于械岂有他谬巧哉精于用法尔已故尝谓三代而上为此业者盛有元元本本师曹习之学而毕丧于祖龙之汉以来多任意揣摩如盲人射的虚发无效或依儗形似如持萤烛象得首失尾至于今而此道尽废有不得不废者矣几何原本者度数之宗所以穷方圆平直之情尽规矩准绳之用也利先生从少年时论道之暇留意艺学且此业在波中所谓师曹习者其师丁氏又絶代名家也以故极精其说而与不佞游久讲谈余晷时时及之因请其象数诸书更以华文独谓此书未译则他书俱不可得论遂共翻其要约六卷既平业而复之由显入微从疑得信盖不用为用众用所基真可谓万象之形囿百家之学海虽实未竟然以当他书既可得而论矣私心自谓不意古学废絶二千年后顿获补缀唐虞三代之阙典遗义其裨益当世定复不小因偕二三同志刻而传之先生曰是书也以当百家之用度几有羲和般墨其人乎犹其小者有大用于此将以习人之灵才令细而确也余以为小用大用实在其人如邓林伐材栋梁榱桷恣所取之耳顾惟先生之学略有三种大者修身事天小者格物穷理物理之一端别为象数一一皆精实典要洞无可疑其分解擘析亦能使人无疑而余乃亟传其小者趋欲先其易信使人绎其文想见其意理而知先生之学可信不疑大防如是则是书之为用更大矣他所说几何诸家借此为用略具其自叙中不备论吴淞徐光启书 钦定四库全书 [book_title]几何原本卷一之首 西洋利玛窦译 界说三十六则 凡造论先当分别解说论中所用名目故曰界说凡厯法地理乐律算章技艺工巧诸事有度有数者皆依頼十府中几何府属凡论几何先从一防始自防引之为线线展为靣靣积为体是名三度第一界 防者无分 无长短广狭厚薄 如下图【凡图十干为识干尽用十二支支尽用八卦八音】 【甲】 第二界 线有长无广 试如一平靣光照之有光无光之间不容一物是线也真平真圆相遇其相遇处止有一防行则止有一线 线有直有曲 第三界 线之界是防【凡线有界者两界必是防】 第四界 直线止有两端两端之间上下更无一防 两防之间至径者直线也稍曲则绕而长矣 直线之中防能遮两界 凡量逺近皆用直线 甲乙丙是直线甲丁丙甲戊丙甲己丙皆是曲线 第五界 靣者止有长有广 体所见为靣 凡体之影极似于靣【无厚之极】 想一线横行所留之迹即成靣也 第六界 靣之界是线 第七界 平靣一靣平在界之内 平靣中间线能遮两界 平靣者诸方皆作直线 试如一方靣用一直绳施于 角绕靣运转不碍于空是平靣也 若曲靣者则中间线不遮两界 第八界 平角者两直线于平靣纵横相遇交接处 凡言甲乙丙角皆指平角 如上甲乙乙丙二线平行相遇不能作角 如上甲乙乙丙二线虽相遇不作平角为是曲线 所谓角止是两线相遇不以线之大小较论 第九界 直线相遇作角为直线角 平地两直线相遇为直线角本书中所论止是直线角但作角有三等今附着于此一直线角二曲线角三杂线角 如下六图 第十界 直线垂于横直线之上若两角等必两成直角而直线下垂者谓之横线之垂线 量法常用两直角及垂线垂线加于横线之上必不作锐角及钝角 若甲乙线至丙丁上则乙之左右作两角相等为直角而甲乙为垂线 若甲乙为横线则丙丁又为甲乙之垂线何者丙乙与甲乙相遇虽止一直角然甲线若垂下过乙则丙线上下定成两直角所以丙乙亦为甲乙之垂线【如今用短尺一纵一横互相为直线互相为垂线】 凡直线上有两角相连是相等者定俱直角中间线为垂线 反用之若是直角则两线定俱是垂线 第十一界 凡角大于直角为钝角 如甲乙丙角与甲乙丁角不等而甲乙丙大于甲乙丁则甲乙丙为钝角 第十二界 凡角小于直角为锐角 如前图甲乙丁是 通上三界论之直角一而己钝角锐角其大小不等乃至无数 是后凡指言角者俱用三字为识其第二字即所指角也 如前图甲乙丙三字第二乙字即所指钝角若言甲乙丁即第二乙字是所指锐角 第十三界 界者一物之终始 今所论有三界防为线之界线为靣之界靣为体之界体不可为界 第十四界 或在一界或在多界之间为形 一界之形如平圆立圆等物多界之形如平方立方及平立三角六八角等物 图见后卷 第十五界 圜者一形于平地居一界之间自界至中心作直线俱等 若甲乙丙为圜丁为中心则自甲至丁与乙至丁丙至丁其线俱等 外圆线为圜之界内形为圜 一说圜是一形乃一线屈转一周复于元处所作如上图甲丁线转至乙丁乙丁转至丙丁丙丁又至甲丁复元处其中形即成圜 第十六界 圜之中处为圜心 第十七界 自圜之一界作一直线过中心至他界为圜径径分圜两平分 甲丁乙戊圜自甲至乙过丙心作一直线为圜径 第十八界 径线与半圜之界所作形为半圜 第十九界 在直线界中之形为直线形 第二十界 在三直线界中之形为三邉形 第二十一界 在四直线界中之形为四邉形 第二十二界 在多直线界中之形为多边形【五邉以上俱是】 第二十三界 三边形三边线等为平边三角形 第二十四界 三边形有两边线等为两边等三角形【或锐或钝】 第二十五界 三边形三边线俱不等为三不等三角形 第二十六界 三边形有一直角为三边直角形 第二十七界 三边形有一钝角为三边钝角形 第二十八界 三邉形有三锐角为三邉各锐角形 凡三边形恒以在下者为底在上二边为腰 第二十九界 四边形四边线等而角直为直角方形 第三十界 直角形其角俱是直角其边两两相等 如上甲乙丙丁形甲乙边与丙丁边自相等甲丙与乙丁自相等 第三十一界 斜方形四边等俱非直角 第三十二界 长斜方形其边两两相等俱非直角 第三十三界 以上方形四种谓之有法四边形四种之外他方形皆谓之无法四边形 第三十四界 两直线于同靣行至无穷不相离亦不相逺而不得相遇为平行线 第三十五界 一形每两边有平行线为平行线方形 第三十六界 凡平行线方形若于两对角作一直线其直线为对角线又于两边纵横各作一平行线其两平行线与对角线交罗相遇即此形分为四平行线方形其两形有对角线者为角线方形其两形无对角线者为余方形 甲乙丁丙方形于丙乙两角作一线为对角线又依乙丁平行作戊己线依甲乙平行作庚辛线其对角线与戊己庚辛两线 交罗相遇于壬即作大小四平行线方形矣则庚壬己丙及戊壬辛乙两方形谓之角线方形而甲庚壬戊及壬己丁辛谓之余方形 求作四则 求作者不得言不可作 第一求 自此防至彼防求作一直线 此求亦出上篇葢自此防直行至彼防即是直线 自甲至乙或至丙至丁俱可作直线 第二求 一有界直线求从彼界直行引长之 如甲乙线从乙引至丙或引至丁俱一直行 第三求 不论大小以防爲心求作一圜 第四求 设一度于此求作彼度较此度或大或小【凡言度者或线或面或体皆是】或言较小作大可作较大作小不可作何者小之至极数穷尽故也此说非是凡度与数不同数者可以长不可以短长数无穷短数有限如百数减半成五十减之又减至一而止一以下不可损矣自百以上增之可至无穷故曰可长不可短也度者可以长亦可以短长者增之可至无穷短者减之亦复无尽尝见庄子称一尺之棰日取其半万世不竭亦此理也何者自有而分不免爲有若减之可尽是有化爲无也有化爲无犹可言也令巳分者更复合之合之又合仍爲尺棰是始合之初两无能并爲一有也两无能并爲一有不可言也公论十九则 公论者不可疑 第一论 设有多度彼此俱与他等则彼与此自相等 第二论 有多度等若所加之度等则合并之度亦等 第三论 有多度等若所减之度等则所存之度亦等 第四论 有多度不等若所加之度等则合并之度不等 第五论 有多度不等若所减之度等则所存之度不等 第六论 有多度俱倍于此度则彼多度俱等 第七论 有多度俱半于此度则彼多度亦等 第八论 有二度自相合则二度必等【以一度加一度之上】 第九论 全大于其分【如一尺大于一寸寸者全尺中十分中之一分也】 第十论 直角俱相等【见界说十】 第十一论 有二横直线或正或偏任加一纵线若三线之间同方两角小于两直角则此二横直线愈长愈相近必至相遇甲乙丙丁二横直线任意作一戊己纵线或正或偏若戊己线同方两角俱小于直角或并之小于两直角则甲乙丙丁线愈长 愈相近必有相遇之处 欲明此理宜察平行线不得相遇者【界说卅四】加一垂线即三线之间定为直角便知此论两角小于直角者其行不得不相遇矣 第十二论 两直线不能为有界之形 第十三论 两直线止能于一防相遇 如云线长界近相交不止一防试于丙乙二界各出直线交于丁假令其交不止一防当引至甲则甲丁乙宜为甲丙乙圜之径而甲丁 丙亦如之【界说十七】夫甲丁乙圜之右半也而甲丁丙亦右半也【界说十七】甲丁乙为全甲丁丙为其分而俱称右半是全与其分等也【本篇九】 第十四论 有几何度等若所加之度各不等则合并之差与所加之差等 甲乙丙丁线等于甲乙加乙戊于丙丁加丁己则甲戊大于丙己者庚戊线也而乙戊大 于丁己亦如之 第十五论 有几何度不等若所加之度等则合并所赢之度与元所赢之度等 如上图反说之戊乙己丁线不等于戊乙加乙甲于己丁加丁丙则戊甲大于己丙者戊庚线也而戊乙大于己丁亦如之 第十六论 有几何度等若所减之度不等则余度所赢之度与减去所赢之度等 甲乙丙丁线等于甲乙减戊乙于丙丁减己丁则乙戊大于丁己者庚戊也而丙己大于甲戊亦如之 第十七论 有几何度不等若所减之度等则余度所赢之度与元所赢之度等 如十四论反说之甲戊丙己线不等于甲戊减甲乙于丙己减丙丁则乙戊长于丁己者亦庚戊也与甲戊长于丙己者等矣 第十八论 全与诸分之并等 第十九论 有二全度此全倍于彼全若此全所减之度倍于彼全所减之度则此较亦倍于彼较【相减之余曰较】 如此度二十彼度十于二十减六于十减三则此较十四彼较七 几何原本卷一之首 钦定四库全书 [book_title]几何原本卷一 西洋利玛窦撰 第一题 于有界直线上求立平边三角形 法曰甲乙直线上求立平边三角形先以甲为心乙为界作丙乙丁圜次以乙为心甲为界作丙甲丁圜两圜相交于丙于丁末自甲 至丙丙至乙各作直线即甲乙丙为平边三角形论曰以甲为心至圜之界其甲乙线与甲丙甲丁线等以乙为心则乙甲线与乙丙乙丁线亦等何者凡为圜自心至界各线俱等故【界説十五】既乙丙等于乙甲而甲丙亦等于甲乙即甲丙亦等于乙丙【公论一】三边等如所求【凡论有二种此以是为论者正论也下仿此】 其用法不必作两圜但以甲为心乙为界作近丙一短界线乙为心甲为界亦如之 两短界线交处即得丙 诸三角形俱推前用法作之【详本篇卄二】 第二题 一直线线或内或外有一防求以防为界作直线与元线等 法曰有甲防及乙丙线求以甲为界作一线与乙丙等先以丙为心乙为界【乙为心丙为界亦可作】作丙乙圜【第三求】次观甲防若在丙乙之外则自甲至丙作甲丙线【第一求】如上前图或甲在丙乙之内则截取甲至丙一分线如上后图两法俱以甲丙线为底任于 上下作甲丁丙平边三角形【本篇一】次自三角形两腰线引长之【第二求】其丁丙引至丙乙圜界而止为丙戊线其丁甲引之出丙乙圜外稍长为甲己线末以丁为心戊为界作丁戊圜其甲己线与丁戊圜相交于庚即甲庚线与乙丙线等 论曰丁戊丁庚线同以丁为心戊庚为界故等【界説十五】于丁戊线减丁丙丁庚线减丁甲其所减两腰线等则所存亦等【公论三】夫丙戊与丙乙同以丙为心戊乙为界亦等【界説十五】即甲庚与丙乙等【公论一】 若所设甲防即在丙乙线之一界其法尤易假如防在丙即以丙为心作乙戊圜从丙至戊即所求第三题 两直线一长一短求于长线减去短线之度 法曰甲短线乙丙长线求于乙丙减甲先以甲为度从乙引至别界作乙丁线【本篇二】次以乙为心丁为界作圜【第三求】圜界与乙丙交于 戊即乙戊与等甲之乙丁等葢乙丁乙戊同心同圜故【界説十五】 第四题 两三角形若相当之两腰线各等各两腰线间之角等则两底线必等而两形亦等其余各两角相当者俱等 解曰甲乙丙丁戊己两三角形之甲与丁两角等甲丙与丁己两线甲乙与丁戊两线各等题言乙丙与戊己两底线必等而两三角形亦等甲乙丙与丁戊己两角甲丙乙与丁己戊两角俱等 论曰如云乙丙与戊己不等即令将甲角置 丁角之上两角必相合无大小甲丙与丁己甲乙与丁戊亦必相合无大小【公论八】此二俱等而云乙丙与戊己不等必乙丙底或在戊己之上为庚或在其下为辛矣戊己既为直线而戊庚己又为直线则两线当别作一形是两线能相合为形也辛仿此【公论十二 此以非为论者驳论也下仿此】 第五题 三角形若两腰等则底线两端之两角等而两腰引出之其底之外两角亦等 解曰甲乙丙三角形其甲丙与甲乙两腰等题言甲丙乙与甲乙丙两角等又自甲丙线任引至戊甲乙线任引至丁 其乙丙戊与丙乙丁两外角亦等 论曰试如甲戊线稍长即从甲戊截取一分与甲丁等为甲己【本篇三】次自丙至丁乙至己各作直线【第一求】即甲己乙甲丁丙两三角形必等何者此两形之甲角同甲己与甲丁两腰又等甲乙与甲丙两腰又等则其底丙丁与乙己必等而底线两端相当之各两角亦等矣【本篇四】又乙丙己与丙乙丁两三角形亦等何者此两形之丙丁乙与乙己丙两角既等【本论】而甲己甲丁两腰 各减相等之甲丙甲乙线即所存丙己乙丁两腰又等【公论三】丙丁与乙己两底又等【本论】又乙丙同腰即乙丙丁与丙乙己两角亦等也则丙之外乙丙己角与乙之外丙乙丁角必等矣【本篇四】次观甲乙己与甲丙丁两角既等于甲乙己减丙乙己角甲丙丁减乙丙丁角则所存甲丙乙与甲乙丙两角必等【公论三】 増从前形知三边等形其三角俱等 第六题 三角形若底线两端之两角等则两腰亦等 解曰甲乙丙三角形其甲乙丙与甲丙乙两角等题言甲乙与甲丙两腰亦等 论曰如云两腰线不等而一长一短试辩之若甲乙为长线即令比甲丙线截去所长之度为乙丁线而乙丁与甲丙等【本篇三】次自丁至丙作直线则本形成两三角形其一为甲乙丙其一为丁乙丙而甲乙丙全形与丁乙丙分形同也是全与其分等也【公论九】何者彼言丁乙丙分形之乙丁与甲乙丙全形之甲丙两线既等丁乙丙分形之乙丙与甲乙丙全形之乙丙又同线而元设丁乙丙与甲丙乙两角等则丁乙丙与甲乙丙两形亦等也【本篇四】 是全与其分等也故底线两端之两角等者两腰必等也 第七题 一线为底出两腰线其相遇止有一防不得别有腰线与元腰线等而于此防外相遇 解曰甲乙线为底于甲于乙各出一线至丙防相遇题言此为一定之处不得于甲上更出一线与甲丙等乙上更出一线与乙丙等 而不于丙相遇 论曰若言有别相遇于丁者即问丁当在丙内邪丙外邪若言丁在丙内则有二説俱不可通何者若言丁在甲丙元线之内则如第一图丁在甲丙两界之间矣如此即甲丁是甲丙之分而云甲丙与甲丁等也是全与其分等也【公论九】若言丁在甲丙乙三角顶间则如第二图丁在甲丙乙之间矣即令自丙至丁作丙丁线而乙丁丙甲丁丙又成两三角形次从乙丁引出至己从乙丙引出至戊则乙丁丙形之乙丁乙丙两腰等者其底线两端之两角乙丁丙乙丙丁宜亦等也其底之外两角己丁丙戊丙丁宜亦等也【本篇五】而甲丁丙形之甲丁甲丙两腰等者其底线两端之两角甲丙丁甲丁丙宜亦等也【本篇五】夫甲丙丁角本小于戊丙丁角而为其分今言甲丁丙与甲丙丁两角等则甲丁丙亦小于戊丙丁矣何况己丁丙又甲丁丙之分更小于戊丙丁可知何言底外两角等乎若言丁在丙外又有三説俱不可通 何者若言丁在甲丙元线外是丁甲即在丙甲元线之上则甲丙与甲丁等矣即如上第一説驳之若言丁在甲丙乙三角顶外即如上第二説驳之若言丁在丙外而后出二线一在三角形内一在其外甲丁线与乙丙线相交如第五图即令将丙丁相联作直线是甲丁丙又成一三角形而甲丙丁宜与甲丁丙两角等也【本篇五】夫甲丁丙角本小于丙丁乙角而为其分据如彼论则甲丙丁角亦小于丙丁乙角矣又丙丁乙亦成一三角形而丙丁乙宜与丁丙乙两角等也【本篇五】夫丁丙乙角本小于甲丙丁角而为其分据如彼论则丙丁乙角亦小于甲丙丁角矣此二説者岂不自相戾乎 第八题 两三角形若相当之两腰各等两底亦等则两腰间角必等 解曰甲乙丙丁戊己两三角形其甲乙与丁戊两腰甲丙与丁己两腰各等乙丙与戊己两底亦等题言甲与丁两角必等 论曰试以丁戊己形加于甲乙丙形之上问丁角在甲角上邪否邪若在上即两角等矣【公论八】或谓不然乃在于庚即问庚当在丁戊 线之内邪或在三角顶之内邪或在三角顶之外邪皆依前论驳之【本篇七】 系本题止论甲丁角若旋转依法论之即三角皆同可见凡线等则角必等不可疑也 第九题 有直线角求两平分之 法曰乙甲丙角求两平分之先于甲乙线任截一分为甲丁【本篇三】次于甲丙亦 截甲戊与甲丁等次自丁至戊作直线次以丁戊为底立平边三角形【本篇一】为丁戊己形末自己至甲作直线即乙甲丙角为两平分 论曰丁甲己与戊甲己两三角形之甲丁与甲戊两线等甲己同是一线戊己与丁己两底又等【何言两底等初从戊丁底作此三角平形此二线为腰各等戊丁故】则丁甲己与戊甲己两角必等【本篇八】 用法如上截取甲丁甲戊即以丁为 心向乙丙间任作一短界线次用元 度以戊为心亦如之两界线交处得己【本篇一】 第十题 一有界线求两平分之 法曰甲乙线求两平分先以甲乙为底作甲乙丙两边等三角形【本篇一】次以甲丙乙角两 平分之【本篇九】得丙丁直线即分甲乙于丁 论曰丙丁乙丙丁甲两三角形之丙乙丙甲两腰等而丙丁同线甲丙丁与乙丙丁两角又等【本篇九】则甲丁与乙丁两线必等【本篇四】 用法以甲为心任用一度但须长于甲乙线之半向上向下各作一短界线次 用元度以乙为心亦如之两界线交处即丙丁末作丙丁直线即分甲乙于戊 第十一题 一直线任于一防上求作垂线 法曰甲乙直线任指一防于丙求丙上作垂线先于丙左右任用一度各截一界为丁为戊【本篇二】次以丁戊为底作两边等角形【本篇一】为丁己戊末自己至丙作直线即己丙为甲 乙之垂线 论曰丁己丙与戊己丙两角形之己丁己戊两腰等而己丙同线丙丁与丙戊两底又等即两形必等丁与戊两角亦等【本篇五】丁己丙与戊己丙两角亦等【本篇八九】则丁丙己与戊丙己两角必等矣等即是直角直角即是垂线【界説十 此后三角形多称角形省文也】 用法于丙防左右如上截取丁与戊即以丁为心任用一度但须长于丙丁线 向丙上方作短界线次用元度以戊为心亦如之两界线交处即己 又用法于丙左右如上截取丁与戊 即任用一度以丁为心于丙上下方 各作短界线次用元度以戊为心亦 如之则上交为己下交为庚末作己庚直线视直线交于丙防即得是用法又为尝巧之法 増若甲乙线所欲立垂线之防乃在线末甲界上甲外无余线可截则于甲乙线上任取一防为丙如前法于丙上立丁丙垂线次以甲丙丁角两平分之【本篇九】为己丙线次以甲丙为度于丁丙垂线上截戊丙线【本篇三】次于戊上如前法 立垂线与己丙线相遇为庚末自庚至甲作直线如所求 论曰庚甲丙与庚丙戊两角形之甲丙戊丙两线既等庚丙同线戊丙庚与甲丙庚两角又等即甲庚戊庚两线必等【本篇四】而对同边之甲角戊角亦等【本篇四】戊既直角则甲亦直角是甲庚为甲乙之垂线【界説十】 用法甲防上欲立垂线先以甲为心向元线上方任抵一界作丙防次用元度 以丙为心作大半圜圜界与甲乙线相遇为丁次自丁至丙作直线引长之至戊为戊丁线戊丁与圜界相遇为己末自己至甲作直线即所求【此法今未能论论见第三卷第三十一题】 第十二题 有无界直线线外有一防求于防上作垂线至直线上法曰甲乙线外有丙防求从丙作垂线至甲乙先以丙为心作一圜令两交于甲乙线为丁为戊次从丁戊各作直线至丙次 两平分丁戊于己【本篇十】末自丙至己作直线即丙己为甲乙之垂线 论曰丙己丁丙己戊两角形之丙丁丙戊两线等丙己同线则丙戊己与丙丁己两角必等【本篇八】而丁丙己与戊丙己两角又 等则丙己丁与丙己戊等皆直角【本篇四】而丙己定为垂线矣 用法以丙为心向直线两处各作短 界线为甲为乙次用元度以甲为心 向丙防相望处作短界线乙为心亦如之两界线交处为丁末自丙至丁作直线则丙戊为垂线 又用法于甲乙线上近甲近乙任取 一防为心以丙为界作一圜界于丙 防及相望处各稍引长之次于甲乙 线上视前心或相望如前图或进或 退如后图任移一防为心以丙为界 作一圜界至与前圜交处得丁末自 丙至丁作直线得戊【若近界作垂线无可截取亦用此法】 第十三题 一直线至他直线上所作两角非直角即等于两直角解曰甲线下至丙丁线遇于乙其甲乙丙与甲乙丁作两角题言此两角当是直角若非直角即是一鋭一钝而并之等于两直角论曰试于乙上作垂线为戊乙【本篇十一】令戊乙 丙与戊乙丁为两直角即甲乙丁甲乙戊两鋭角并之与戊乙丁直角等矣次于甲乙丁甲乙戊两鋭角又加戊乙丙一直角并此三角定与戊乙丙戊乙丁两直角等也【公论十八】次于甲乙戊又加戊乙丙并此鋭直两角定与甲乙丙钝角等也次于甲乙戊戊乙丙鋭直两角又加甲乙丁鋭角并此三角定与甲乙丁甲乙丙鋭钝两角等也夫甲乙丁甲乙戊戊乙丙三角既与两直角等则甲乙丁与甲乙丙两角定与两直角等【公论一】 第十四题 一直线于线上一防出不同方两直线偕元线每旁作两角若每旁两角与两直角等即后出两线为一直线 解曰甲乙线于丙防上左出一线为丙丁右出一线为丙戊若甲丙戊甲丙丁两角与两直角等题言丁丙与丙戊是一直线 论曰如云不然令别作一直线必从丁丙更引出一线或离戊而上为丁丙己或离戊而下为丁丙庚也若上于戊则甲丙线至丁丙己直线上为甲丙己甲丙丁两角此两角宜与两直角等【本篇十三】如此即甲丙戊甲丙丁两角与甲丙己甲丙丁两角亦等矣试减甲丙丁角而以甲丙戊与甲丙己两角较之果相等乎【公论三】夫甲丙己本 小于甲丙戊而为其分今曰相等是全与其分等也【公论九】若下于戊则甲丙线至丁丙庚直线上为甲丙庚甲丙丁两角此两角宜与两直角等【本篇十三】如此即甲丙庚甲丙丁两角与甲丙戊甲丙丁两角亦等矣试减甲丙丁角而以甲丙戊与甲丙庚较之果相等乎【公论三】夫甲丙戊实小于甲丙庚而为其分今曰相等是全与其分等也【公论九】两者皆非则丁丙戊是一直线 第十五题 凡两直线相交作四角每两交角必等 解曰甲乙与丙丁两线相交于戊题言甲戊丙与丁戊乙两角甲戊丁与丙戊乙两角各等论曰丁戊线至甲乙线上则甲戊丁丁戊乙 两角与两直角等【本篇十三】甲戊线至丙丁线上则甲戊丙甲戊丁两角与两直角等【本篇十三】如此即丁戊乙甲戊丁两角亦与甲戊丁甲戊内两角等【公论十】试减同用之甲戊丁角其所存丁戊乙甲戊丙两角必等【公论三】又丁戊线至甲乙线上则甲戊丁丁戊乙两角与两直角等【本篇十三】乙戊线至丙丁线上则丁戊乙丙戊乙两角与两直角等【本篇十三】如此即甲戊丁丁戊乙两角亦与丁戊乙丙戊乙两角【公论十】试 减同用之丁戊乙角其所存甲戊丁丙戊乙必等一系推显两直线相交于中防上作四角与四直角等 二系一防之上两直线相交不论几许线几许角定与四直角等【公论十八】 増题一直线内出不同方两直线而所作两交角等即后出两线为一直线 解曰甲乙线内取丙防出丙丁丙戊两线而所作甲丙戊丁丙乙两交角等或 甲丙丁戊丙乙两交角等题言戊丙丙丁即一直线 论曰甲丙戊角既与丁丙乙角等每加一戊丙乙角即甲丙戊戊丙乙两角必与丁丙乙戊丙乙两角等【公论二】而甲丙戊戊丙乙与两直角等【本篇十三】则丁丙乙戊丙乙亦与两直角等是戊丙丙丁为一直线【本篇十四】 第十六题 凡三角形之外角必大于相对之各角 解曰甲乙丙角形自乙甲线引之至丁题言外角丁甲丙必大于相对之内角 甲乙丙甲丙乙 论曰欲显丁甲丙角大于甲丙乙角试以甲丙线两平分于戊【本篇十】自乙至戊作直线引长之从戊外截取戊巳与乙戊等【本篇三】次自甲至己作直线即甲戊己戊乙丙两角形之 戊己与戊乙两线等戊甲与戊丙两线等甲戊己乙戊丙两交角又等【本篇十五】则甲己与乙丙两底亦等【本篇四】两形之各边各角俱等而己甲戊与戊丙乙两角亦等矣夫己甲戊乃丁甲丙之分则丁甲丙大于己甲戊亦大于相等之戊丙乙而丁甲丙外角不大于相对之甲丙乙内角乎次显丁甲丙大于甲乙丙试自丙甲线引长之至庚次以甲乙线两平分于辛【本篇十】自丙至辛作直线引长之从辛外截取辛壬与丙辛等【本篇三】次自甲至壬作直线依前论推显甲辛壬辛丙乙两角形之各边各角俱等则壬甲辛与辛乙丙两角亦等矣夫壬甲辛乃庚甲乙之分必小于庚甲乙也庚甲乙又与丁甲丙两交角等【本篇十五】则甲乙丙内角不小于丁甲丙外角乎其余乙丙上作外角俱大于相对之内角依此推显 第十七题 凡三角形之每两角必小于两直角 解曰甲乙丙角形题言甲乙丙甲丙乙两角丙甲乙甲乙丙两角甲丙乙丙甲乙两角皆小于两直角 论曰试用两边线丙甲引出至戊丙乙引出至丁即甲乙丁外角大于相对之甲丙乙内角矣【本篇十六】此两率者每加一甲乙丙角则甲乙丁甲乙丙必大于甲丙乙甲乙丙矣【公论四】夫甲乙丁甲乙丙与两直角等也【本篇十三】则甲丙乙甲乙丙小于两直角也余二仿此第十八题 凡三角形大边对大角小边对小角 解曰甲乙丙角形之甲丙边大于甲乙边乙丙边题言甲乙丙角大于乙丙甲角乙甲丙 角 论曰甲丙边大于甲乙边即于甲丙线上截甲丁与甲乙等【本篇三】自乙至丁作直线则甲乙丁与甲丁乙两角等矣【本篇五】夫甲丁乙角者乙丙丁角形之外角必大于相对之丁丙乙内角【本篇十六】则甲乙丁角亦大于甲丙乙角而况甲乙丙又函甲乙丁于其中不又大于甲丙乙乎如乙丙边大于甲乙边则乙甲丙角亦大于甲丙乙角依此推显 第十九题 凡三角形大角对大边小角对小边 解曰甲乙丙角形乙角大于丙角题言对乙角之甲丙边必大于对丙角之甲乙边 论曰如云不然令言或等或小若言甲丙与甲乙等则甲丙角宜与甲乙角等矣【本篇五】何设乙角大于丙角也若言甲丙小于甲乙则甲丙边对甲乙大角宜大【本篇十八】又何言小也如甲角大于丙角则乙丙边大于甲乙边依此推显 第二十题 凡三角形之两边并之必大于一边 解曰甲乙丙角形题言甲丙甲乙边并之必大于乙丙边甲丙丙乙并之必大于甲乙甲 乙乙丙并之必大于甲丙 论曰试于丙甲边引长之以甲乙为度截取甲丁【本篇三】自丁至乙作直线令甲丁甲乙两腰等而甲丁乙甲乙丁两角亦等【本篇五】即丙乙丁角大于甲乙丁角亦大于丙丁乙角矣夫丁丙边对丙乙丁大角也岂不大于乙丙边对丙丁乙小角者乎【本篇十九】又甲丁甲乙两线各加甲丙线等也则甲乙加甲丙者与丙丁等矣丙丁既大于乙丙则甲乙甲丙两边并必大于乙丙边也余二仿此 第二十一题 凡三角形于一边之两界出两线复作一三角形在其内则内形两腰并之必小于相对两腰而后两线所作角必大于相对角 解曰甲乙丙角形于乙丙边之两界各出一线遇于丁题言丁丙丁乙两线并必小于甲乙甲丙并而乙丁丙角必大于乙甲丙角 论曰试用内一线引长之如乙丁引之至戊即乙甲戊角形之乙甲甲戊两线并必大于乙戊线也【本篇二十】此二率者每加一戊丙线则乙甲甲戊戊丙并必大于乙戊戊丙并矣【公论四】又戊丁丙角形之戊丁戊丙线并必大于丁丙线也此二率者每加一丁乙线则戊丁戊丙丁乙并必大于丁丙丁乙并矣【公论四】夫乙甲甲戊戊丙既大于乙戊戊丙岂不更大于丁丙丁乙乎【本篇二十】又乙甲戊角形之丙戊丁外角大于相对之乙甲戊内角【本篇十六】即丁戊丙角形之乙丁丙外角更大于相对之丁戊丙内角矣而乙丁丙角岂不更大于乙甲丙角乎 第二十二题 三直线求作三角形其每两线并大于一线也 法曰甲乙丙三线其第一第二线并大于第三线【若两线比第三线或等或小即不能作三角形见本篇二十】求作三角形先任作丁戊线长于三线并次以甲为度从丁截取丁巳线【本篇三】以乙为度从己截取己庚线以丙为度从庚截取 庚辛线次以己为心丁为界作丁壬癸圜以庚为心辛为界作辛壬癸圜其两圜相遇下为壬上为癸末以庚巳为底作癸庚癸巳两直线即得己癸庚三角形【用壬亦可作 若丁壬癸圜不到子辛壬癸圜不到丑即是两线或等或小于第三线不成三角形矣】 论曰此角形之丁己己癸线皆同圜之半径等【界説十五】则己癸与甲等庚辛庚癸线亦皆同圜之半径等则庚癸与丙等己庚元以乙为度则角形三线与所设三线等 用法任以一线为底以底之一界为心第二线为度向上作短界线次以又一界为心第三线为度向上作短界线两界线交处向下作两腰如所求 若设一三角形求别作一形与之等亦用此法 第二十三题 一直线任于一防上求作一角与所设角等 法曰甲乙线于丙防求作一角与丁戊己角等先于戊丁线任取一防为庚于戊巳线任取一防为辛自庚至辛作直线次依甲乙线作丙壬癸角形与戊庚辛角形等【本篇卄二】即丙壬丙癸两腰与戊庚戊辛两腰等壬癸底 与庚辛底又等则丙角与戊角必等【本篇八】 第二十四题 两三角形相当之两腰各等若一形之腰间角大则底亦大 解曰甲乙丙与丁戊己两角形其甲乙与丁戊两腰甲丙与丁巳两腰各等若乙甲丙角大于戊丁己角题言乙丙底必大于戊巳底论曰试依丁戊线从丁防作戊丁庚角与乙甲丙角等【本篇卄三】则戊丁庚角大于戊丁己角而丁庚腰在丁巳之外矣次截丁庚线与丁巳等【本篇三】即丁庚丁巳俱与甲丙等又自戊至庚作直线是甲乙与丁戊甲丙与丁庚腰线各等乙甲丙与戊丁庚两角亦等而乙丙与戊庚两底必等也【本篇四】次问所作戊庚底今在戊巳底上邪抑同在一线邪抑在其下邪若在上即如第二图自己至庚作直线则丁庚己角形之丁庚丁巳两腰等而丁庚己与丁己庚两角亦等矣【本篇五】夫戊庚己角乃丁庚己角之分必小于丁庚己亦必小于相等之丁巳庚而丁巳庚又戊己庚角之分则戊庚己益小于戊巳庚也【公论九】则对戊庚己小角之戊己腰必小于对戊己庚大角之戊庚腰也【本篇十九】若戊巳与戊庚两底同线即如第四图戊己乃戊庚之分则戊己必小于戊 庚也【公论九】若戊庚在戊巳之下即如第六图自己至庚作直线次引丁庚线出于壬引丁巳线出于辛则丁庚丁巳两腰等而辛巳庚壬庚己两外角亦等矣【本篇五】夫戊庚己角乃壬庚己角之分必小于壬庚己亦必小于相等之辛巳庚而辛巳庚又戊己庚角之分则戊庚巳益小于戊己庚也【公论九】则对戊庚己小角之戊巳腰必小于对戊己庚大角之戊庚腰也【本篇十九】是三戊巳皆小于等戊庚之乙丙【本篇四】也 第二十五题 两三角形相当之两腰各等若一形之底大则腰间角亦大 解曰甲乙丙与丁戊己两角形其甲乙与丁戊甲丙与丁巳各两腰等若乙丙底大于戊巳底题言乙甲丙角大于戊丁巳角 论曰如云不然令言或小或等若言等则两 形之两腰各等腰间角又等宜两底亦等【本篇四】何设乙丙底大也若言乙甲丙角小则对乙甲丙角之乙丙线宜亦小【本篇廿四】何设乙丙底大也 第二十六题【二支】 两三角形有相当之两角等及相当之一边等则余两边必等余一角亦等其一边不论在两角之内及一角之对 先解一边在两角之内者曰甲乙丙角形之甲乙丙甲丙乙两角与丁戊己角形之丁戊巳丁巳戊两角各等在两角内之乙丙边与 戊巳边又等题言甲乙与丁戊两边甲丙与丁巳两边各等而乙甲丙角与戊丁巳角亦等 论曰如云两边不等而丁戊大于甲乙令于丁戊线截取庚戊与甲乙等【本篇三】次自庚至己作直线即庚戊巳角形之庚戊戊巳两边宜与甲乙乙丙两边等矣夫乙角与戊角元等则甲丙与庚巳宜等【本篇四】而庚巳戊角与甲丙乙角宜亦等也【本篇四】既设丁己戊与甲丙乙两角等今又言庚己戊与甲丙乙两角等是庚己戊与丁己戊亦等全与其分等矣【公论九】以此见两边必等两边既等则余一角亦等 后解相等边不在两角之内而在一角之对者曰甲乙丙角形之乙角丙角与丁戊己角形之戊角丁己戊角各等而对丙之甲乙边 与对己之丁戊边又等题言甲丙与丁己两边丙乙与己戊两边各等而甲角与戊丁己角亦等 论曰如云两边不等而戊己大于乙丙令于戊己线截取戊庚与乙丙等【本篇三】次自丁至庚作直线即丁戊庚角形之丁戊戊庚两边宜与甲乙乙丙两边等矣夫乙角与戊角元等则甲丙与丁庚宜等【本篇四】而丁庚戊角与甲丙乙角宜亦等也既设丁巳戊与甲丙乙两角等今又言丁庚戊与甲丙乙两角等是丁庚戊外角与相对之丁巳戊内角等矣【本篇十六】可乎以此见两边必等两边既等则余一角亦等 第二十七题 两直线有他直线交加其上若内相对两角等即两直线必平行 解曰甲乙丙丁两直线加他直线戊己交于庚于辛而甲庚辛与丁辛庚两角等题言甲乙丙丁两线必平行 论曰如云不然则甲乙丙丁两直线必至相 遇于壬而庚辛壬成三角形则甲庚辛外角宜大于相对之庚辛壬内角矣【本篇十六】乃先设相等乎若设乙庚辛角与丙辛庚角等亦依此论若言甲乙丙丁两直线相遇于癸亦依此论 第二十八题【二支】 两直线有他直线交加其上若外角与同方相对之内角等或同方两内角与两直角等即两直线必平行先解曰甲乙丙丁两直线加他直线戊己交于庚于辛其戊庚甲外角与同方相对之庚辛丙内角等题言甲乙丙丁两线必平行论曰乙庚辛角与相对之内角丙辛庚等【本篇】 【卄七】戊庚甲与乙庚辛两交角亦等【本篇十五】即两直线必平行 后解曰甲庚辛丙辛庚两内角与两直角等题言甲乙丙丁两线必平行 论曰甲庚辛丙辛庚两角与两直角等而甲庚戊甲庚辛两角亦与两直角等【本篇十三】试减同用之甲庚辛即所存甲庚戊与丙辛庚等矣既外角与同方相对之内角等即甲乙丙丁必平行【本题】 第二十九题【三支】 两平行线有他直线交加其上则内相对两角必等外角与同方相对之内角亦等同方两内角亦与两直角等先解曰此反前二题故同前图有甲乙丙丁二平行线加他直线戊巳交于庚于辛题言甲庚辛与丁辛庚内相对两角必等 论曰如云不然而甲庚辛大于丁辛庚则丁辛庚加辛庚乙宜小于辛庚甲加辛庚乙矣【公论四】夫辛庚甲辛庚乙元与两直角等【本篇十三】据如彼论则丁辛庚辛庚乙两角小于两直角而甲乙丙丁两直线向乙丁行必相遇也【公论十一】可谓平行线乎 次解曰戊庚甲外角与同方相对之庚辛丙内角等论曰乙庚辛与相对之丙辛庚两内角等【本题】则乙庚辛交角相等之戊庚甲【本篇十五】与丙辛庚必等【公论一】后解曰甲庚辛丙辛庚两内角与两直角等 论曰戊庚甲与庚辛丙两角既等【本题】而每加一甲庚辛角则庚辛丙甲庚辛两角与甲庚辛戊庚甲两角必等【公论二】夫甲庚辛戊庚甲本与两直角等【本篇十三】则甲庚辛丙辛庚两内角亦与两直角等 第三十题 两直线与他直线平行则元两线亦平行 解曰此题所指线在同面者不同面线后别有论如甲乙丙丁两直线各与他线戊巳平行题言甲乙与丙丁亦平行 论曰试作庚辛直线交加于三直线甲乙于壬戊巳 于子丙丁于癸其甲乙与戊巳既平 行即甲壬子与相对之己子壬两内 角等【本篇廿九】丙丁与戊巳既平行即丁 癸子内角与己子壬外角亦等【本篇廿九】 丁癸子与甲壬子亦为相对之内角亦等【公论一】而甲乙丙丁为平行线【本篇廿七】 第三十一题 一防上求作直线与所设直线平行 法曰甲防上求作直线与乙丙平行先从甲防向乙丙线任指一处作直线为甲丁即乙丙线上成甲丁乙角次于甲防上作一角与甲丁乙等【本篇】 【廿三】为戊甲丁从戊甲线引之至己即己戊与乙丙平行论曰戊己乙丙两线有甲丁线联之其所作戊甲丁与甲丁乙相对之两内角等即平行线【本篇廿七】 増从此题生一用法设一角两线求作有法四边形有角与所设角等两两边线与所设线等法曰先作己丁戊角与丙等次截丁戊线与甲等己丁线与乙等末依丁戊平行作己庚依己丁平行作庚戊即所求 本题用法于甲防求作直线与乙丙平行先作甲丁线次以丁为心任作戊己圜界次用元度以甲为心作庚辛圜界稍长于 戊己次取戊己圜界为度于庚辛圜界截取庚辛末自甲至辛作直线各引长之即所求 又用法以甲防为心于乙丙线近乙处任指一防作短界线为丁次用元度以丁为心于乙丙上向丙截取一分作短界线为 戊次用元度以戊为心向上与甲平处作短界线又用元度以甲为心向甲平处作短界线后两界线交处为己自甲至己作直线各引长之即所求 第三十二题【二支】 凡三角形之外角与相对之内两角并等凡三角形之内三角并与两直角等 先解曰甲乙丙角形试从乙丙边引至丁题言甲丙 丁外角与相对之内两角甲乙并等 论曰试作戊丙线与甲乙平行【本篇三一】令甲丙为甲乙戊丙之交加线则乙甲丙角与相对 之甲丙戊角等【本篇卄九】又乙丁线与两平行线相遇则戊丙丁外角与相对之甲乙丙内角等【本篇廿九】既甲丙戊与乙甲丙等而戊丙丁与甲乙丙又等则甲丙丁外角与内两角甲乙并等矣 后解曰甲乙丙三角并与两直角等 论曰既甲丙丁角与甲乙两角并等更于甲丙丁加甲丙乙则甲丙丁甲丙乙两角并与甲乙丙内三角并等矣【公论二】夫甲丙丁甲丙乙并元与两直角等【本篇十三】则甲乙丙内三角并亦与两直角等 増从此推知凡第一形当两直角第二形当四直角第三形当六直角自此以上至于无穷每命形之数倍之为所当直角之数【凡一线二线不能为形故三边为第一形四边为第二形五边为第三形六边为第四形仿此以至无穷】又视每形边数减二边即所存边数是本形之数论曰如上四图第一形三边减二边存一边即是本形一数倍之当两直角【本题】第二形四边减二边存二边即是本形二数倍之当四 直角欲显此理试以第二形作一对角线成两三角形每形当两直角并之则当四直角矣第三形五边减二边存三边即是本形三数倍之当六直角欲显此理试以第三形作两对角线成三三角形每形当两直角并之亦当六直角矣其余依此推显以至无穷 又一法每形视其边数每边当两直角而减四直角其存者即本形所当直角 论曰欲显此理试于形中任作一防从此防向各角俱作直线令每形所分角形之数如其边数每一分形三角当二直角【本题】其近防之处不论几角皆当四直角【本篇十五之系】次减近防诸角即是减四直角其存者则本形所当直角如上第四形六边中间任指一防从防向各角分为六三角形每一分形三角六形共十八角今于近防处减当四直角之六角所存近边 十二角当八直角余仿此 一系凡诸种角形之三角并俱相等【本题増】 二系凡两腰等角形若腰间直角则余两角每当直角之半腰间钝角则余两角俱小于半直角腰间鋭角则余两角俱大于半直角 三系平边角形每角当直角三分之二 四系平边角形若从一角向对边作垂线分为两角形此分形各有一直角在垂线之下两旁则垂线之上两旁角每当直角三分之一其余两角每当直角三分之二 増从三系可分一直角为三平分其法任于一边立平边角形次分对直角一边为 两平分从此边对角作垂线即所求如上图甲乙丙直角求三分之先于甲乙线上作甲乙丁平边角形【本篇一】次平分甲丁于戊【本篇九】末作乙戊直线 第三十三题 两平行相等线之界有两线联之其两线亦平行亦相等 解曰甲乙丙丁两平行相等线有甲丙乙丁两线联之题言甲丙乙丁亦平行相等线论曰试作甲丁对角线为甲乙丙丁之交加 线即乙甲丁丙丁甲相对两内角等【本篇卄九】又甲丁线上下两角形之甲乙丙丁两边既等甲丁同边则对乙甲丁角之乙丁线与对丙丁甲角之甲丙线亦等【本篇卄九】而乙丁甲与丙甲丁两角亦等也【本篇四】此两角者甲丙乙丁之内相对角也两角既等则甲丙乙丁两线必平行【本篇廿七】 第三十四题 凡平行线方形每相对两边线各等每相对两角各等对角线分本形两平分 解曰甲乙丁丙平行方形【界説三五】题言甲乙与丙丁两线甲丙与乙丁两线各等又言乙与丙两角乙甲丙与丙丁乙两角各等又言若 作甲丁对角线即分本形为两平分 论曰甲乙与丙丁既平行则乙甲丁与丙丁甲相对之两内角等【本篇廿九】甲丙与乙丁既平行则乙丁甲与丙甲丁相对之两内角等【本篇廿九】甲乙丁角形之乙甲丁乙丁甲两角与甲丁丙角形之丙丁甲丙甲丁两角既各等甲丁同边则甲乙与丙丁甲丙与乙丁俱等也而丙角与相对之乙角亦等矣【本篇廿六】又乙丁甲角加丙丁甲角与丙甲丁角加乙甲丁角既等即乙甲丙与丙丁乙相对两角亦等也【公论二】又甲乙丁甲丁丙两角形之甲乙乙丁两边与丁丙丙甲两边各等腰间之乙角与丙角亦等则两角形必等【本篇四】而甲丁线分本形为两平分 第三十五题 两平行方形若同在平行线内又同底则两形必等解曰甲乙丙丁两平行线内有丙丁戊甲与丙丁乙巳两平行方形同丙丁底题言此两形等等者不谓腰等角等谓所函之地等后 言形等者多仿此 先论曰设己在甲戊之内其丙丁戊甲与丙丁乙己皆平行方形丙丁同底则甲戊与丙丁巳乙与丙丁各相对之两边各等【本篇三四】而甲戊与己乙亦等【公论一】试于甲戊己乙两线各减己戊即甲己与戊乙亦等【公论三】而甲丙与戊丁元等【本篇三四】乙戊丁外角与己甲丙内角又等【本篇廿九】则乙戊丁与己甲丙两角形必等矣【本篇四】次于两角形每加一丙丁戊己无法四边形则丙丁戊甲与丙丁乙己两平行方形等也【公论二】次论曰设己戊同防依前甲戊与戊乙等乙戊丁与戊甲丙两角形等【本篇四】而每加一戊丁丙角形则丙丁戊甲与丙丁乙戊两平行方形必等【公论二】 后论曰设己防在戊之外而丙己与戊丁两线交于庚依前甲戊与己乙两线等而每加一戊己线即戊乙与甲己两线亦等【公论二】因显己甲丙与乙戊丁两角形亦等【本篇四】次每减一己戊庚角形则所存戊庚丙甲与乙己庚丁两无法四边形亦等【公论三】次于两无法形每加一庚丁丙角形则丙丁戊甲与丙丁 乙己两平行方形必等【公论二】 第三十六题 两平行线内有两平行方形若底等则形亦等 解曰甲乙丙丁两平行线内有甲丙戊己与庚辛丁乙两平行方形而丙戊与辛丁两底等题言两形亦等 论曰试自丙至庚戊至乙各作直线相联其 丙戊庚乙各与辛丁等则丙戊与庚乙亦等【本篇卅四】庚乙与丙戊既平行线则庚丙与乙戊亦平行线【本篇卅三】而甲丙戊己与庚丙戊乙两平行方形同丙戊底者等矣【本篇三五】庚辛丁乙与庚丙戊乙两平行方形同庚乙底者亦等矣【本篇三五】既尔则庚辛丁乙与甲丙戊己亦等【公论一】 第三十七题 两平行线内有两三角形若同底则两形必等 解曰甲乙丙丁两平行线内有甲丙丁乙丙丁两角形同丙丁底题言两形必等 论曰试自丁至戊作直线与甲丙平行次自 丁至己作直线与乙丙平行【本篇三一】夫甲丙丁戊乙丙丁己两平行方形在甲乙丙丁两平行线内同丙丁底既等【本篇三五】则甲丙丁角形为甲丙丁戊方形之半与乙丙丁角形为乙丙丁己方形之半者【甲丁乙丁两对角线平分两方形见本篇卅四】亦等【公论七】 第三十八题 两平行线内有两三角形若底等则两形必等 解曰甲乙丙丁两平行线内有甲丙戊与乙己丁两角形而丙戊与己丁两底等题言两形必等 论曰试自庚至戊辛至丁各作直线与甲丙乙己平行【本篇卅一】其甲丙戊庚与乙己丁辛两平行方形既等【本篇卅六】则甲丙戊与乙己丁两角形为两方形之半者【本篇卅四】亦等【公论七】 増凡角形任于一边两平分之向对角作直线即分本形为两平分 论曰甲乙丙角形试以乙丙边两平分于丁【本篇十】自丁至甲作直线即甲丁线分本形为两平分何者试于甲角上作直线与乙丙平行【本篇卅一】则甲乙丁甲丁丙两角形在两平行线内两底等两形亦等【本题】 二増题凡角形任于一边任作一防求从防分本形为两平分 法曰甲乙丙角形从丁防求两平分先自 丁至相对甲角作甲丁直线次平分乙丙线于戊【本篇十】作戊己线与甲丁平行【本篇卅一】末作己丁直线即分本形为两平分 论曰试作甲戊直线即甲戊己己丁戊两角形在两平行线内同己戊底者等而每加一己戊丙形则己丁丙与甲戊丙两角形亦等【公论二】夫甲戊丙为甲乙丙之半【本题増】则己丁丙亦甲乙丙之半 第三十九题 两三角形其底同其形等必在两平行线内 解曰甲乙丙与丁丙乙两角形之乙丙底同其形复等题言在两平行线内者葢云自甲至丁作直线必与乙丙平行 论曰如云不然令从甲别作直线与乙丙平行【本篇卅一】必在甲丁之上或在其下矣设 在上为甲戊而乙丁线引出至戊即作戊丙直线是甲乙丙宜与戊丙乙两角形等矣【本篇卅七】夫甲乙丙与丁丙乙既等而与戊丙乙复等是全与其分等也【公论九】设在甲丁下为甲己即作己丙直线是己丙乙与丁丙乙亦等如前驳之 第四十题 两三角形其底等其形等必在两平行线内 解曰甲乙丙与丁戊己两角形之乙丙与戊己两底等其形亦等题言在两平行线内者葢云自甲至丁作直线必与乙己平 行 论曰如云不然令从甲别作直线与乙己平行【本篇卅一】必在甲丁之上或在其下矣设在上为甲庚而戊丁线引出至庚即作庚己直线是甲乙丙宜与庚戊己两角形等矣【本篇三八】夫甲乙丙与丁戊己既等而与庚戊己复等是全与其分等也【公论九】设在甲丁下为甲辛即作辛己直线是辛戊己与丁戊己亦等如前驳之第四十一题 两平行线内有一平行方形一三角形同底则方形倍大于三角形 解曰甲乙丙丁两平行线内有甲丙丁戊方形乙丁丙角形同丙丁底题言方形倍大于角形 论曰试作甲丁直线分方形为两平分则甲丙丁与乙丁丙两角形等矣【本篇卅七】夫甲丙丁戊倍大于甲丙丁【本篇卅三】必倍大于乙丁丙 第四十二题 有三角形求作平行方形与之等而方形角有与所设角等 法曰设甲乙丙角形丁角求作平行方形与甲乙丙角形等而有丁角先分一边为两平分如乙丙边平分于戊【本篇十】次作丙戊己角 与丁角等【本篇廿】次自甲作直线与乙丙平行【本篇卅一】而与戊己线遇于己末自丙作直线与戊己平行为丙庚【本篇卅一】而与甲己线遇于庚则得己戊丙庚平行方形与甲乙丙角形等 论曰试自甲至戊作直线其甲戊丙角形与己戊丙庚平行方形在两平行线内同底则己戊丙庚倍大于甲戊丙矣【本篇四一】夫甲乙丙亦倍大于甲戊丙【本篇卅八増】即与己戊丙庚等【公论六】 第四十三题 凡方形对角线旁两余方形自相等 解曰甲乙丙丁方形有甲丙对角线题言两旁之乙壬庚戊与庚己丁辛两余方形【界説卅六】必等 论曰甲乙丙甲丙丁两角形等【本篇卅四】甲戊庚甲庚辛两角形亦等【本篇卅四】而于甲乙丙减甲戊庚于甲丙丁减甲庚辛则所存乙丙庚戊与庚丙丁辛两无法四边形亦等矣【公论三】又庚壬丙己角线方形之庚丙己庚丙壬两角形等【本篇三四】而于两无法四边形每减其一则 所存乙壬庚戊与庚己丁辛两余方形安得不等【公论三】第四十四题 一直线上求作平行方形与所设三角形等而方形角有与所设角等 法曰设甲线乙角形丙角求于甲线上作平行方形与乙角形等而有丙角先作丁戊己庚平行方形与乙角形等而戊己庚角与丙角等【本篇四二】次于庚己线引长之作己辛线与甲等次作辛壬线与戊己平行【本篇三一】次于丁戊引长之与辛壬线遇于壬 次自壬至己作对角线引出之又自丁庚引长之与对线角遇于癸次自癸作直线与庚辛平行又于壬辛引长之与癸线遇于子末于戊己引长之至癸子线得丑即己丑子辛平行方形如所求 论曰此方形之己辛线与甲等而辛己丑角为戊己庚之交角【本篇十五】则与丙等又本形与戊己庚丁同为余方形等【本篇四三】则与乙角形等 第四十五题 有多边直线形求作一平行方形与之等而方形角有与所设角等 法曰设甲乙丙五边形丁角求作平行方形与五边形等而有丁角先分五边形为甲乙丙三三角形次作戊己庚辛平行方形与甲等而有丁角【本篇四二】次于 戊辛己庚两平行线引长之作庚辛壬癸平行方形与乙等而有丁角【本篇四四】末复引前线作壬癸子丑平行方形与丙等而有丁角【本篇四四】即此三形并为一平行方形与甲乙丙并形等而有丁角自五以上可至无穷俱仿此法 论曰戊己庚与辛庚癸两角等而每加一己庚辛角即辛庚癸己庚辛两角定与己庚辛戊己庚两角等夫己庚辛戊己庚是两平行线内角与两直角等也【本篇廿九】则己庚辛辛庚癸亦与两直角等而己庚庚癸为一直线也【本篇十四】又戊辛庚与戊己庚两对角等而辛壬癸与辛庚癸两对角亦等则戊己庚辛庚辛壬癸皆平行方形也【本篇卅四】壬癸子丑依此推显【本篇三十】即与戊己癸壬并为一平行方形矣 増题两直线形不等求相减之较几何 法曰甲与乙两直线形甲大于乙以乙减甲求较几何先任作丁丙己戊平行方形与甲等次于丙丁线上依丁角作丁丙辛庚平行方形与乙等【本题】即得辛 庚戊己为相减之较矣何者丁丙己戊之大于丁丙辛庚较余一辛庚戊己也则甲大于乙亦辛庚戊己也 第四十六题 一直线上求立直角方形 法曰甲乙线上求立直角方形先于甲乙两界各立垂线为丁甲为丙乙皆与甲乙线等 【本篇十一】次作丁丙线相联即甲乙丙丁为直角方形论曰甲乙两角俱直角则丁甲丙乙为平行线【本篇廿八】此两线自相等则丁丙与甲乙亦平行线【本篇三三】而甲乙丙丁四线俱平行俱相等又甲乙俱直角则相对丁丙亦俱直角【本篇卅四】而甲乙丙丁定为四直角方形第四十七题 凡三边直角形对直角边上所作直角方形与余两边上所作两直角方形并等 解曰甲乙丙角形于对乙甲丙直角之乙丙边上作乙丙丁戊直角方形【本篇四六】题言此形与甲乙边上所作甲乙己庚及甲丙边上所作甲丙辛壬两直角方形并等论曰试从甲作甲癸直线与乙戊丙丁平行【本篇卅一】分乙丙边于子次自甲至丁至戊各作直线末自乙至辛自丙 至己各作直线其乙甲丙与乙甲庚既皆直角即庚甲甲丙是一直线【本篇十四】依显乙甲甲壬亦一直线又丙乙戊与甲乙己既皆直角而每加一甲乙丙角即甲乙戊与丙乙己两角亦等【公论二】依显甲丙丁与乙丙辛两角亦等又甲乙戊角形之甲乙乙戊两边与丙乙己角形之己乙乙丙两边等甲乙戊与丙乙己两角复等则对等角之甲戊与丙己两边亦等而此两角形亦等矣【本篇四】夫甲乙己庚直角方形倍大于同乙己底同在平行线内之丙乙己角形【本篇四一】而乙戊癸子直角形亦倍大于同乙戊底同在平行线内之甲乙戊角形则甲乙己庚不与乙戊癸子等乎【公论六】依显甲丙辛壬直角方形与丙丁癸子直角形等则乙戊丁丙一形与甲乙己庚甲丙辛壬两形并等矣 一増凡直角方形之对角线上作直角方形倍大于元形如甲乙丙丁直角方形之 甲丙线上作直角方形倍大于甲乙丙丁形二増题设不等两直角方形如一以甲为边一以乙为边求别作两直角方形自相等而并之又与元设两形并等 法曰先作丙戊线与甲等次作戊丙丁直角而丙丁线与乙等次作戊丁线相聨末 于丙丁戊角丙戊丁角各作一角皆半于直角己戊己丁两腰遇于己【公论十一】而等【本篇六】即己戊己丁两线上所作两直角方形自相等而并之又与丙戊丙丁上所作两直角方形并等 论曰己丁戊己戊丁两角既皆半于直角则丁己戊为直角【本篇卅二】而对直角之丁戊线上所作直角方形与两腰线上所作两直角方形并等矣【本题】己戊与己丁既等则其上所作两直角方形自相等矣又丁戊线上所作直角方形与丙丁丙戊线上所作两直角方形并既等则己戊己丁上两直角方形并与丙戊丙丁上两直角方形并亦等三増题多直角方形求并作一直角方形与之等法曰如五直角方形以甲乙丙丁戊为边任等不等求作一直角方形与五形并等先作己庚辛直角而己庚线与甲等庚辛线与乙等次作己辛线旋作己辛壬直角而辛壬与丙等次作己壬线 旋作己壬癸直角而壬癸与丁等次作己癸线旋作己癸子直角而癸子与戊等末作己子线题言己子线上所作直角方形即所求 论曰己辛上作直角方形与甲乙两形并等【本题】己壬上作直角方形与己辛及丙两形并等余仿此推显可至无穷 四増三边直角形以两边求第三边长短之数 法曰甲乙丙角形甲为直角先得甲乙甲 丙两边长短之数如甲乙六甲丙八求乙丙边长短之数其甲乙甲丙上所作两直角方形并既与乙丙上所作直角方形等【本题】则甲乙之羃【自乘之数曰羃】得三十六甲丙之羃得六十四并之得百而乙丙之羃亦百百开方得十即乙丙数十也又设先得甲乙乙丙如甲乙六乙丙十而求甲丙之数其甲乙甲丙上两直角方形并既与乙丙上直角方形等则甲乙之羃得三十六乙丙之羃得百百减三十六得甲丙之羃六十四六十四开方得八即甲丙八也求甲乙仿此 此 以开方尽实者为例其不尽实者自具筭家分法 第四十八题 凡三角形之一边上所作直角方形与余边所作两直角方形并等则对一边之角必直角 解曰此反前题如甲乙丙角形其甲丙边上所作直角方形与甲乙乙丙边上所作两直 角方形并等题言甲乙丙角必直角 论曰试于乙上作甲乙丁直角而乙丁与乙丙两线等次作丁甲线相联其甲乙丁既直角则甲丁上直角方形与甲乙乙丁上两直角方形并等【本篇四七】而甲乙乙丁上两直角方形并与甲乙乙丙上两直角方形并又等【甲乙同乙丁乙丙等故】即丁甲上直角方形与甲丙上直角方形必等夫甲乙丁角形之甲乙乙丁两腰与甲乙丙角形之甲乙乙丙两腰既等而丁甲甲丙两底又等则对底线之两角亦等【本篇八】甲乙丁既直角即甲乙丙亦直角 几何原本卷一 钦定四库全书 [book_title]几何原本卷二之首 西洋利玛窦译 界説二则 第一界 凡直角形之两边函一直角者为直角形之矩线如甲乙偕乙丙函甲乙丙直角得此两边即知直角形大小之度今别作戊线已线与甲乙乙丙各等亦即知甲乙丙丁直角形大小之度则戊偕已两线为直角形之矩线此例与筭法通如上图一边得三一边得四相乘得十二则三偕四两边为十二之矩数 凡直角诸形之内四角皆直故不必更言四边及平行线止名为直角形省文也 凡直角诸形不必全举四角止举对角二字即指全形如甲乙丙丁直角形止举甲丙或乙丁亦省文也第二界 诸方形有对角线者其两余方形任偕一角线方形为磬折形 甲乙丙丁方形任直斜角作甲丙对角线从庚点作戊己辛壬两线与方形边平行而分本形为四方形其辛己庚乙两形为余方形辛戊己壬两形为角线方形【一卷界説三六】两余方形任偕一角线方形为磬折形如辛己庚乙两余方形偕己壬角线方形同在癸子丑圜界内者是癸子丑磬折形也用辛戊角线方形仿此 几何原本卷二之首 钦定四库全书 [book_title]几何原本卷二 西洋利玛窦撰 第一题 两直线任以一线任分为若干分其两元线矩内直角形与不分线偕诸分线矩内诸直角形并等 解曰甲与乙丙两线如以乙丙三分之为乙丁丁戊戊丙题言甲偕乙丙矩线内直 角形与甲偕乙丁甲偕丁戊甲偕戊丙三矩线内直角形并等 论曰试作乙己直角形在乙丙偕等甲之己丙矩线内【作法于乙界作庚乙丙界作己丙两垂线俱与甲等为平行次作庚己直线与乙丙平行】次于丁戊两点作辛丁壬 戊两垂线与庚乙己丙平行【一卷卅三】其辛丁与庚乙壬戊与己丙既平行则辛丁与壬戊亦平行而辛丁壬戊与己丙等即亦与甲等【一卷卅四】如此则乙辛直角形在甲偕乙丁矩线内丁壬直角形在甲偕丁戊矩线内戊己直角形在甲偕戊丙矩线内并之则三矩内直角形与甲偕乙丙两元线矩内直角形等 注曰二卷前十题皆言线之能也【能者谓其上能为直角形也如十尺线其上能为百尺方形之类】其説与筭数最近故九卷之十四题俱以数明此十题之理今未及详因题意难显畧用数明之如本题设两数当两线为六为十以十任三分之为五为三为二六乘十为六十之一大实与六乘五为三十及六乘三为十八六乘二为十二之三小实并等 第二题 一直线任两分之其元线上直角方形与元线偕两分线两矩内直角形并等 解曰甲乙线任两分于丙题言甲乙上直角方形与甲乙偕甲丙甲乙偕丙乙两矩线内直角形并等 论曰试于甲乙线上作甲丁直角方形从丙点作己丙垂线与甲戊乙丁平行【一卷卅一】其甲戊与甲乙既等【一卷卅四】则甲己直角形在甲乙甲丙矩线内乙丁与甲乙既等则丙丁直角形在甲乙丙乙矩线内而此两形并与甲丁直角方形等 又论曰试别作丁线与甲乙等其甲乙线既任分于丙则甲乙偕丁矩线内直角形【即甲乙上直角方形】与甲丙偕丁丙乙偕丁两矩线内直角形并等 【本篇一】 注曰以数明之设十数任两分之为七为三十乘七为七十及十乘三为三十之两小实与十自之百一大羃等 第三题 一直线任两分之其元线任偕一分线矩内直角形与分余线偕一分线矩内直角形及一分线上直角方形并等 解曰甲乙线任两分于丙题言元线甲乙任偕一分线如甲丙矩内直角形【不论甲丙为长分为短分】与分余丙乙偕甲丙矩线内直角形及甲丙上直角方形并等论曰试作甲丁直角方形从乙界作乙巳垂线与甲戊平行【一卷卅一】而于戊丁引 长之遇于己其甲戊与甲丙等则甲己直角形在元线甲乙偕一分线甲丙矩内丙丁与甲丙等则丙己直角形在一分线甲丙偕分余线丙乙矩内而甲己直角形与甲丙丙乙矩线内丙己直角形及甲丙上甲丁直角方形并等 又论曰试别作丁线与一分线甲丙等其甲乙线既任分于丙则甲乙偕丁矩线内直角形【即甲乙偕甲丙矩线内直角形】与丁偕丙乙【即甲丙偕丙乙】丁偕甲丙【即甲】 【丙上直角方形】两矩线内直角形并等【本篇一】 注曰以数明之设十数任两分之为七为三如前图则十乘七为七十与七乘三之实二十一及七自之羃四十九并等如后图十乘三为三十与七乘三之实二十一及三之羃九并等 第四题 一直线任两分之其元线上直角方形与各分上两直角方形及两分互偕矩线内两直角形并等 解曰甲乙线任两分于丙题言甲乙线上直角方形与甲丙丙乙线上两直角方形及甲丙偕丙乙丙乙 偕甲丙矩线内两直角形并等 论曰试于甲乙线上作甲丁直角方形次作乙戊对角线次从丙作丙己线与乙丁 平行遇对角线于庚末从庚作辛壬线与甲乙平行而分本形为四直角形即甲乙戊角形之甲乙甲戊两边等而甲乙戊与甲戊乙两角亦等【一卷五】夫甲乙戊形之三角并与两直角等【一卷卅二】而甲为直角即甲乙戊甲戊乙皆半直角【一卷卅之二系】依显丁乙戊角形之丁乙戊丁戊乙两角亦皆半直角则戊己庚外角与内角丁等为直角【一卷卅九】而己戊度既半直角则己庚戊等为半直角矣角既等则己庚己戊两边亦等【一卷六】庚辛辛戊亦等【一卷卅四】而辛巳为直角方形也依显丙壬亦直角方形也又庚辛与甲丙两对边等【一卷卅四】而乙丙与庚丙俱为直角方形边亦等则辛己为甲丙线上直角方形丙壬为丙乙线上直角方形也又甲庚及庚丁两直角形各在甲丙丙乙矩线内也则甲丁直角方形与甲丙丙乙两线上两直角方形及两线矩内两直角形并等矣 系从此推知凡直角方形之角线形皆直角方形又论曰甲乙线既任分于丙则元线甲乙上直角方形与元线偕各分线矩内两直角形并等【本篇二】又甲乙偕甲丙矩线内直角形与甲丙偕 丙乙矩线内直角形及甲丙上直角方形并等【本篇三】甲乙偕丙乙矩线内直角形与丙乙偕甲丙矩线内直角形及丙乙上直角方形并等【本篇三】则甲乙上直角方形与甲丙丙乙上两直角方形及甲丙偕丙乙丙乙偕甲丙矩线内两直角形并等 注曰以数明之设十数任两分之为七为三十之羃百与七之羃四十九三之羃九及三七互乘之实两二十一并等 第五题 一直线两平分之又任两分之其任两分线矩内直角形及分内线上直角方形并与平分半线上直角方形等 解曰甲乙线两平分于丙又任两分于丁其丙丁为分内线【丙丁线者丙乙所以大于丁乙之较又甲丁所以大于甲丙之较故曰分内线】题言甲丁丁乙矩线内直角形及分内线丙丁上直角方形并与丙乙线上直角方形等 论曰试于丙乙线上作丙己直角方形次作乙戊对角线从丁作丁庚线与乙己平行遇对角线于辛次从辛作壬癸线与丙乙平行次从甲作甲子线与丙戊平行末从壬癸线引长之遇于子夫丁壬癸庚皆直角方形【本篇四之系】而辛丁与丁乙两线等【一卷卅四】癸辛 与丙丁两线等则甲辛直角形在任分之甲丁丁乙矩线内而癸庚为分内线丙丁上直角方形也今欲显甲辛直角形及癸庚直角方形并与丙己直角方形等者于丙辛辛己相等之两余方形【一篇四三】每加一丁壬直角方形即丙壬及丁己两直角形等矣而甲癸与丙壬两形同在平行线内又底等即形亦等【一卷卅六】则甲癸与丁巳亦等也即又每加一丙辛直角形则丑寅卯罄折形岂不与甲辛等次于罄折形又加一癸庚直角方形岂不与丙巳直角方形等也而甲辛癸庚两形并亦与丙己等也则甲丁丁乙矩线内直角形及丙丁上直角方形并与丙乙上直角方形等 注曰以数明之设十数两平分之各五又任分之为八为二则三为分内数【三者五所以大于二之较又八所以大于五之较】二八之实十六三之羃九与五之羃二十五等 第六题 一直线两平分之又任引増一直线共为一全线其全线偕引増线矩内直角形及半元线上直角方形并与半元线偕引増线上直角方形等 解曰甲乙线两平分于丙又从乙引长之増乙丁与甲乙通为一全线题言甲丁偕乙丁矩线内直角形及半元线丙乙上直角方形并与丙丁上直角方形等 论曰试于丙丁上作丙戊直角方形次作丁己对角线从乙作乙庚线与丁戊平行遇对角线于辛次从辛作壬癸线与丙丁平行次从甲作甲子线与丙己平行末从壬癸线引长之遇于子夫乙壬癸庚皆直角方形【本篇四之系】而乙丁与丁壬两线等【一卷卅四】癸辛与丙乙两线等则甲壬直角形在甲丁偕乙丁矩线内而癸庚为丙乙上直角方形也今欲显甲壬直角形及癸庚直角方形并与丙戊直角方形等者试观甲癸与丙辛两直角形同在平行线内又底等即形亦等【一卷卅六】而丙辛与辛戊等【一卷四三】则辛戊与甲癸亦等即又每加一丙壬直角形则丑寅卯磬折形与甲壬等夫磬折形加一癸庚形本与丙戊直角方形等也即甲壬癸庚两形并亦与丙戊等也则甲丁乙丁矩线内直角形及丙乙上直角方形并岂不与丙丁上直角方形等 注曰以数明之设十数两平分之各五又引増二共十二二乘之为二十四及五之羃二十五与七之羃四十九等 第七题 一直线任两分之其元线上及任用一分线上两直角方形并与元线偕一分线矩内直角形二及分余线上直角方形并等 解曰甲乙线任分于丙题言元线甲乙上及任用一分线如甲丙上两直角方形并【不论甲丙为长分为短分】与甲乙偕甲丙矩内直角形二及分余线丙乙上直角方形并等论曰试于甲乙上作甲丁直角方形次作乙戊对角线从丙作丙己线与乙丁平行 遇对角线于庚末从庚作辛壬线与甲乙平行夫辛己丙壬皆直角方形【本篇四之系】而辛庚与甲丙等【一卷卅四】即辛己为甲丙上直角方形也又甲戊与甲乙等即甲己直角形在甲乙偕甲丙矩线内也又戊丁丁壬与甲乙甲丙各等即辛丁直角形亦在甲乙偕甲丙矩线内也夫甲己己壬两直角形【即癸子丑罄折形】及丙壬直角方形并本与甲丁直角方形等今于甲己辛丁两直角形并加一丙壬直角方形即与甲丁直角方形加一辛巳直角方形等矣则甲乙甲丙矩线内直角形二及丙乙上直角方形并与甲乙上直角方形及甲丙上直角方形并等也 注曰以数明之设十数任分之为六为四如前图十之羃百及六之羃三十六并与 十六互乘之两实百二十及四之羃十六等如后图十之羃百及四之羃十六并与十四互乘之两实八十及六之羃三十六等 第八题 一直线任两分之其元线偕初分线矩内直角形四及分余线上直角方形并与元线偕初分线上直角方形等 解曰甲乙线任分于丙题言元线甲乙偕初分线丙乙矩内直角形四【不论丙乙为长分为短分】及分余线甲丙上直角方形并与甲乙偕丙乙上直角方形等 论曰试以甲乙线引増至丁而乙丁与丙乙等于全线上作甲戊直角方形次作丁巳对角线从乙作乙庚线与丁戊平行遇对角线于辛次从丙作丙壬线与甲巳平行遇对角线于癸次从辛作子丑线与甲丁平行遇丙壬于寅末从癸作卯辰线与戊己平行遇乙庚于巳其卯壬寅巳乙丑俱角线方形【一卷卅四之系】而卯癸与甲丙两线等【一卷卅四】即卯壬为甲丙上直角方形又寅辛与丙乙两线 等【一篇卅四】即寅巳为丙乙上直角方形与乙丑等【丙乙与乙丁等故】又乙辛辛巳两线亦各与丙乙等而甲辛子巳两直角形各在甲乙丙乙矩线内即等【子辛与甲乙等故】寅庚辛戊两直角形亦各在甲乙丙乙矩线内即又等【寅辛辛丑与丙乙乙丁等辛庚丑戊与等甲乙之子辛等故】寅巳既与乙丑等而每加一癸庚即乙丑癸庚并与寅庚又等是甲辛一子巳二辛戊三乙丑四癸庚五五直角形并为午未申磬折形与元线甲乙偕初分线丙乙矩内直角形四等而午未申磬折形及卯壬直角方形本与甲戊直角方形等则甲乙乙丙矩线内直角形四及甲丙上直角方形并与甲乙偕丙乙上直角方形等注曰以数明之设十数任分之为六为四如前图十六互乘之实四为二百四十及四之羃十六共二百五十六与十六之羃等如后图十四互乘之实四为一百六十及六之羃三十六共一百九十六与十四之羃等 第九题 一直线两平分之又任两分之任分线上两直角方形并倍大于平分半线上及分内线上两直角方形并解曰甲乙线平分于丙又任分于丁题言甲丁丁乙上两直角方形并倍大于平分半线甲丙上分内线 丙丁上两直角方形并 论曰试于丙上作丙戊垂线与甲丙等次作甲戊戊乙两腰次从丁作丁己垂线遇戊乙于己从己作己庚线与甲乙平行遇 戊丙于庚末作甲己线其甲丙戊角形之甲丙丙戊两腰等即丙戊甲丙甲戊两角亦等【一卷五】而甲丙戊为直角即余两角皆半直角【一卷卅二之系】依显丙戊乙亦半直角又戊庚己角形之戊庚己角为戊丙乙之外角即亦直角【一卷廿九】而庚戊己半直角即庚己戊亦半直角【一卷卅二之系】又庚戊己庚己戊两角等即庚戊庚己两腰亦等【一卷六】依显丁乙己角形之丁乙丁己两腰亦等夫甲丙戊角形之丙为直角即甲戊线上直角方形与甲丙丙戊线上两直角方形并等【一卷四七】而甲丙丙戊上两直角方形自相等即甲戊上直角方形倍大于甲丙上直角方形矣又戊庚己角形之庚为直角即戊己线上直角方形与庚戊庚己线上两直角方形并等【一卷四七】而庚戊庚己上两直角方形自相等即戊己上直角方形倍大于等庚己之丙丁上直角方形矣【庚己丙丁为丙己直角形之对边故见一卷卅四】则是甲戊戊己上两直角 方形并倍大于甲丙丙丁上两直角方形并也又甲己上直角方形既等于甲戊戊己上两直角方形并又等于甲丁丁己上两直角方形并【一篇四七】则甲丁丁己上两直角方形并亦倍大于甲丙丙丁上两直角方形并矣而丁己与丁乙等则甲丁丁乙上两直角方形并岂不倍大于甲丙丙丁上两直角方形并也注曰以数明之设十数两平分之各五又任分之为七为三分内数二其七之羃四十九及三之羃九倍大于五之羃二十五及二之羃四 第十题 一直线两平分之又任引増一线共为一全线其全线上及引増线上两直角方形并倍大于平分半线上及分余半线偕引増线上两直角方形并 解曰甲乙直线平分于丙又任引増为乙丁题言甲丁线上及乙丁线上两直角方形并倍大于甲丙线上及丙丁线上两直角方形并 论曰试于丙上作丙戊垂线与甲丙等自戊至甲至乙各作腰线次从丁作己丁垂线引长之又从戊乙引长之遇于庚次作戊己线与丙丁平行末作甲庚线依前题论推显甲戊乙为直角丙戊乙为半直角即相对之戊庚己亦半直角【一卷廿九】又己为直角【一卷卅四】即己戊庚亦半直角【一卷卅二】而己戊己庚两腰必等【一卷六】依显乙丁丁庚两腰亦等夫甲戊上直角方形等于甲丙丙戊上两直角方形并【一卷四七】必倍大于甲丙上直角方形而戊庚上直角方形等于戊己己庚上两直角方形并【一卷四七】必倍大于对戊己边之丙丁上直角方形【一卷卅四】则甲戊戊庚上两直角方形并倍大于甲丙丙丁上两直角方形并也又甲庚上直角方形等于甲戊戊庚上两直角方形并亦等于甲丁丁庚上两直角方形并则甲丁丁庚上两直角方形并亦倍大于甲丙丙丁上两直角方形并也而甲丁乙丁上两直角方形并倍大于甲丙丙丁上两直角方形并矣【丁庚与乙丁等故】 注曰以数明之设十数平分之各五又任増三为十三十三之羃一百六十九及三之羃九倍大于五之羃二十五及八之羃六十四也 第十一题 一直线求两分之而元线偕初分线矩内直角形与分余线上直角方形等 法曰甲乙线求两分之而元线偕初分小线矩内直角形与分余大线上直角方形等先于甲乙上作甲丙直角方形 次以甲丁线两平分于戊次作戊乙线次从戊甲引増至己而戊己线与戊乙等末于甲乙线截取甲庚与甲己等即甲乙偕庚乙矩线内直角形与甲庚上直角方形等如所求 论曰试于庚上作壬辛线与丁己平行次作己辛线与甲庚平行其壬庚与丙乙等即与甲乙等而庚丙直角形在甲乙偕庚乙矩线内也又甲庚与甲己等而甲为直角即己庚为甲庚上直角方形也【一卷卅四】今欲显庚丙直角形与己庚直角方形等者试观甲丁两平分于戊而引増一甲己是丁己偕甲己矩线内直角形【即丁辛直角形】及甲戊上直角方形并与等戊己之戊乙上直角方形等【本篇六】夫戊乙上直角方形等于甲戊甲乙上两直角方形并【一卷四七】即丁辛直角形及甲戊上直角方形并与甲戊甲乙上两直角方形并等矣次各减同用之甲戊上直角方形即所存丁辛直角形不与 甲乙上甲丙直角方形等乎此二率者又各减同用之甲壬直角形则所存己庚直角方形与庚丙直角形等而甲乙偕庚乙矩线内直角形与甲庚上直角方形等也 注曰此题无数可解説见九卷十四题 第十二题 三边钝角形之对钝角边上直角方形大于余边上两直角方形并之较为钝角旁任用一边偕其引増线之与对角所下垂线相遇者矩内直角形二 解曰甲乙丙三边钝角形甲乙丙为钝角从余角如甲下一垂线与钝角旁一边如丙乙之引増线遇于丁为直角题言对钝角之甲丙边上直角方形大于甲乙乙丙边上两直角方形并之较为丙乙偕乙丁 矩线内直角形二反説之则甲乙乙丙上两直角方形及丙乙偕乙丁矩线内直角形二并与甲丙上直角方形等 论曰丙丁线既任分于乙即丙丁上直角方形与丙乙乙丁上两直角方形及丙乙偕乙丁矩线内直角形二并等【本篇四】此二率者每加一甲丁上直角方形即丙丁甲丁上两直角方形并与丙乙乙丁甲丁上 直角方形三及丙乙偕乙丁矩线内直角形二并等也夫甲丙上直角方形等于丙丁甲丁上两直角方形并【一卷四七】即亦等于丙乙乙丁甲丁上直角方形三及丙乙偕乙丁矩线内直角形二并也又甲乙线上直角方形既等于乙丁甲丁上两直角方形并【一卷四七】即甲丙上直角方形与甲乙丙乙上两直角方形及丙乙偕乙丁矩线内直角形二并等矣 第十三题 三边鋭角形之对鋭角边上直角方形小于余边上两直角方形并之较为鋭角旁任用一边偕其对角所下垂线旁之近鋭角分线矩内直角形二 解曰甲乙丙三边鋭角形从一角如甲向对边乙丙下一垂线分乙丙于丁题言对甲丙乙鋭角之甲乙边上直角方形小于乙丙甲丙边上两直角方形并之较为乙丙偕丁丙矩线内直角形二反説之则乙 丙甲丙上两直角方形并与甲乙上直角方形及乙丙偕丁丙矩线内直角形二并等 论曰乙丙线既任分于丁即乙丙丁丙上两直角方形并与乙丙偕丁丙矩线内直角形二及乙丁上直角方形并等【本篇七】此二率者每加一甲丁上直角方形即乙丙丁丙甲丁上直角方形三与乙丙偕丁丙矩线内直角形二及乙丁甲丁上两直角方形并等 也又甲丙上直角方形等于丁丙甲丁上两直角方形并【一卷四七】即乙丙甲丙上两直角方形并与乙丙偕丁丙矩线内直角形二及乙丁甲丁上两直角方形并等也又甲乙上直角方形等于乙丁甲丁上两直角方形并【一卷四七】即乙丙甲丙上两直角方形并与乙丙偕丁丙矩线内直角形二及甲乙上直角方形并等反説之则甲乙上直角方形小于乙丙甲丙上两直角方形并者为乙丙偕丁丙矩线内直角形二也注曰题中止论鋭角形不言直角钝角形而直角钝角形中俱有两鋭角【一卷十七卅二】即对鋭角边上形亦同此论【如第二第三图是】但三鋭角形所作垂线任用一角而直角形必用直角钝角形必用钝角此为异耳【直角钝角形不用直角钝角不能作垂线】 第十四题 有直线形求作直角方形与之等 法曰甲直线无法四边形求作直角 方形与之等先作乙丁形与甲等而 直角【一卷四五】次任用一边引长之如丁 丙引之至己而丙己与乙丙等次以 丁巳两平分于庚其庚点或在丙点或在丙点之外若在丙即乙丁是直角方形与甲等矣【葢丙己与乙丙等又与丙丁等而余边俱相等故乙丁为直角方形见一卷卅四】若庚在丙外即以庚为心丁巳为界作丁辛巳半圜末从乙丙线引长之遇圜界于辛即丙辛上直角方形与甲等 论曰试自庚至辛作直线其丁巳线既两平分于庚又任两分于丙则丁丙偕丙巳矩内直角形【即乙丁直角形葢丙己与乙丙等故】及庚丙上直角方形并与等庚巳之庚辛上直角方形等【本篇五】夫庚辛上直角方形等于庚丙丙辛上两直角方形并【一卷四七】即乙丁直角形及庚丙上直角方形并与庚丙丙辛上两直角方形并等次各减同用之庚丙上直角方形则丙辛上直角方形与乙丁直角形等 増题凡先得直角方形之对角线所长于本形边之较而求本形边 法曰直角方形之对角线所长于本形边之较为甲乙而求本形边先于甲乙上作甲丙直角方形次作乙丁对角线又引长之为丁戊线而丁戊与甲丁等即得乙戊 线如所求 论曰试于乙戊作戊己垂线从乙甲线引长之遇于己其乙戊己既直角而戊乙己为半直角【一卷卅二】即戊己乙亦半直角而戊乙与戊己两边等【一卷六】次作己庚与戊乙平行作乙庚与戊己平行即戊庚形为戊乙边上直角方形也末作戊甲线即丁戊甲丁甲戊两角等也【一卷五】夫乙戊己丁甲己既两皆直角试每减一相等之丁戊甲丁甲戊角即所存己戊甲己甲戊两角必等而己戊己甲两边必等【一卷六】则乙己对角线大于乙戊边之较为甲乙矣 此増不在本书因其方形故类附于此 几何原本卷二 钦定四库全书 [book_title]几何原本卷三之首 西洋利玛窦译 界説十则 第一界 凡圜之径线等或从心至圜界线等为等圜 三卷将论圜之情故先为圜界説此解圜之等者如上图甲乙乙丙两径等或丁己戊庚从心至圜界等即甲己乙乙庚丙两圜等若下图甲乙乙丙两径不 等或丁己戊庚从心至圜界不等则两圜亦不等矣第二界 凡直线切圜界过之而不与界交为切线 甲乙线切乙己丁圜之界乙又引长之至丙而不与界交其甲丙线全在圜外为切线若戊己线先切圜界而引之至庚入圜内则交线也 第三界 凡两圜相切而不相交为切圜 甲乙两圜不相交而相切于丙或切于外如第一图 或切于内如第三图其第二 第四图则交圜也 第四界 凡圜内直线从心下垂线其垂线大小之度即直线距心逺近之度 凡一点至一直线上惟垂线至近其他即逺垂线一而已逺者无数也故欲知点与线相去逺近必用垂线为度试如前图甲点与乙丙线相去逺近必以甲丁垂线为度为甲丁一线独去直线至近他若甲戊甲己诸线愈大愈逺乃至无数故如后图 説甲乙丙丁圜内之甲乙丙丁两线其去戊心逺近等为己戊庚戊两垂线等故若辛壬线去戊心近矣为戊癸垂线小故 第五界 凡直线割圜之形为圜分 甲乙丙丁圜之乙丁直线任割圜之一分如甲乙丁及乙丙丁两形皆为圜分凡分 有三形其过心者为半圜分函心者为圜大分不函心者为圜小分又割圜之直线为所割圜界之一分为弧 第六界 凡圜界偕直线内角为圜分角 以下三界论圜角三种本界所言杂 圜也其在半圜分内为半圜角在大 分内为大分角在小分内为小分角 第七界 凡圜界任于一点出两直线作一角为负圜分角甲乙丙圜分甲丙为底于乙点出两直线作甲乙丙角形其甲乙丙角为负甲乙丙圜分 角 第八界 若两直线之角乘圜之一分为乘圜分角 甲乙丙丁圜内于甲点出甲乙甲丁两线其乙甲丁角为乘乙丙丁圜分角 圜角三种之外又有一种为切边角或直线切圜或两圜相切其两圜相切者又或内或外如上图甲乙线切丙丁戊圜于丙即甲丙丁乙丙戊两角为切边角又丙丁戊己戊庚两圜外相切于戊及己戊庚己辛壬两 圜内相切于己即丙戊己戊己辛壬己庚三角俱为切边角 第九界 凡从圜心以两直线作角偕圜界作三角形为分圜形甲乙丙丁圜从戊心出戊甲戊丙两线偕甲丁丙圜界作角形为分圜形 第十界 凡圜内两负圜分角相等即所负之圜分相似 甲乙丙丁圜内有甲乙己与丁丙戊两负圜分角等则所负甲乙丁己与丁丙甲戊两圜分相似 又有两圜或等或不等其负圜分角等即圜分俱 相似如上三图三 圜之甲乙丙丁戊 己庚辛壬三负圜分角等即所负甲乙丙丁戊己庚辛壬三圜分相似【相似者如云同为几分圜之几也】 几何原本卷三之首 钦定四库全书 [book_title]几何原本卷三 西洋利玛窦撰 第一题 有圜求寻其心 法曰甲乙丙丁圜求寻其心先于圜之两界任作一甲丙直线次两平分之于戊【一卷】 【十】次于戊上作乙丁垂线两平分之于己即己为圜心 论曰如云不然令言心何在彼不得言在己之上下何者乙丁线既平分于己离平分不能为心故必言心在乙丁线外为庚即令自庚至丙至戊至甲各作直线则甲庚戊角形之甲戊既与丙庚戊角形之丙戊两边等戊庚同边而庚甲庚 丙两线俱从心至界宜亦等即对等边之庚戊甲庚戊丙两角宜亦等【一卷八】而为两直角矣【一卷界説十】夫乙戊甲既直角而庚戊甲又为直角可不可也 系因此推显圜内有直线分他线为两平分而作直角即圜心在其内 第二题 圜界任取二点以直线相联则直线全在圜内 解曰甲乙丙圜界上任取甲丙二点作直线相聨题言甲丙线全在圜内 论曰如云在外若甲丁丙线令寻取甲乙丙圜之戊心【本篇一】次作戊甲戊丙两直线次于甲丁丙线上作戊乙丁线而与圜界遇于乙即戊甲丁丙当为三角形以甲丁丙为底戊甲戊丙两腰等其戊甲丙戊丙甲两角宜等【一卷五】而戊丁甲为戊丙丁之外角宜大于戊丙丁角即亦宜大于戊甲丁角【一卷十六】则对戊丁甲大角之戊甲线宜大于戊丁线矣【一卷十九】夫戊甲与戊乙本同圜之半径等据如所论则戊乙亦大于戊丁不可通也若云不在圜外而 在圜界依前论令戊甲大于戊乙亦不可通也第三题 直线过圜心分他直线为两平分其分处必为两直角为两直角必两平分 解曰乙丙丁圜有丙戊线过甲心分乙丁线为两平分于己题言甲己必是垂线而 己旁为两直角又言己旁既为两直角则甲己分乙丁必两平分 先论曰试从甲作甲乙甲丁两线即甲乙己角形之乙己与甲丁己角形之丁己两边等甲己同边甲乙甲丁两线俱从心至界又等即两形等则其对等边之甲己乙甲己丁亦等【一卷八】而为两直角矣 后论曰如前作甲乙甲丁两线甲乙丁角形之甲乙甲丁两边既等则甲乙丁甲丁乙两角亦等【一卷五】又甲乙己角形之甲己乙甲乙己两角与甲丁己角形之甲己丁甲丁己两角各等而对直角之甲乙甲丁两边又等则己乙己丁两边亦等【一卷廿六】 欲显次论之防又有一説如甲丁上直角方形与甲己己丁上两直角方形并等【一卷四七】而甲乙上直角方形与甲己乙己上两直角方形并亦等即甲己己乙上两直角方形并与甲己己丁 上两直角方形并亦等此二率者每减一甲己上直角方形则所存乙己己丁上两直角方形自相等而两边亦等 第四题 圜内不过心两直线相交不得俱为两平分 解曰甲丙乙丁圜内有甲乙丙丁两直线俱不过己心【若一过心一不过心即两线不得俱为两平分其理易显】 而交于戊题言两直线或有一线为两平分不得俱为两平分 论曰若云不然而甲乙丙丁能俱两平分于戊试令寻本圜心于己【本篇一】从己至戊作甲乙之垂线其己戊既分甲乙为两平分即为两直角【本篇三】而又能分丙丁为两平分亦宜为两直角是己戊甲为直角而己戊丙亦直角全与其分等矣 第五题 两圜相交必不同心 解曰甲乙丁戊乙丁两圜交于乙于丁题言两圜不同心 论曰若言丙为同心令自丙至乙至甲各作直线其丙乙至圜交而丙甲截两圜之界于戊于甲夫丙既为戊乙丁圜之心则丙乙与丙 戊等而又为甲乙丁圜之心则丙乙与丙甲又等是丙戊与丙甲亦等而全与其分等也 第六题 两圜内相切必不同心 解曰甲乙丙乙两圜内相切于乙题言两圜不同心 论曰若言丁为同心令自丁至乙至丙各作直线其丁乙至切界而丁丙截两圜之界于甲于丙夫丁既为甲乙圜之心则丁乙与丁甲等而又为丙乙圜之心则丁乙与丁丙又等是丁甲与丁丙亦等而全与其分等也 第七题 圜径离心任取一点从点至圜界任出几线其过心线最大不过心线最小余线愈近心者愈大愈近不过心线者愈小而诸线中止两线等 解曰甲丙丁戊乙圜其径甲乙其心己离心任取一点为庚从庚至圜界任出几线为庚丙庚丁庚戊题先言从庚所出诸线惟过心庚甲最大次言不过心庚乙最小三言庚丙大于庚丁庚丁大于庚戊愈近心愈大愈近庚乙愈小后言庚乙两旁止 可出两线等 先论曰试从已心出三线至丙至丁至戊其丙己庚角形之丙己己庚两边并大于丙庚一边【一卷二十】而丙己己庚等于甲己己庚则庚甲大于庚丙依显庚丁庚戊俱小于庚甲是庚甲最大 次论曰己庚戊角形之己戊一边小于己庚庚戊两边并【一卷二十】而己戊与己乙等则己乙小于己庚庚戊并矣次各减同用之己庚则庚乙小于庚戊依显庚戊小于庚丁庚丁小于庚丙是庚乙最小 三论曰丙己庚角形之丙己与丁己庚角形之丁己两边等己庚同边而丙己庚角大于丁己庚角【全大于分】则对大角之庚丙边大于对小角之庚丁边【一卷廿四】依显庚丁大于庚戊而愈近心愈大愈近庚乙愈小后论曰试依戊己乙作乙己辛相等角而抵圜界为己辛线次从庚作庚辛线其戊己庚角形之戊己腰与庚己辛角形之辛巳腰既等己庚同腰两腰间角又等则对等角之庚戊庚辛两底亦等【一卷四】而庚乙两旁之庚戊庚辛等矣此外若有从庚出线在辛之上即依第三论大于庚辛在辛之下即小于庚辛故云庚乙两旁止可出庚戊庚辛两线等 第八题 圜外任取一防从防任出几线其至规内则过圜心线最大余线愈离心愈小其至规外则过圜心线为径之余者最小余线愈近径余愈小而诸线中止两线等 解曰乙丙丁戊圜之外从甲防任 出几线其一为过癸心之甲壬其 余为甲辛为甲庚为甲己皆至规 内【规内线者如车辐之指牙】题先言过心之甲 壬最大次言近心之甲辛大于离心之甲庚甲庚又大于甲己三反上言规外之甲乙为乙壬径余者【规外线者如车辐之凑毂】最小四言甲丙近径余小于甲丁甲丁又小于甲戊后言甲乙两旁止可出两线等 先论曰试从癸心至丙丁戊己庚辛各出直线其甲癸辛角形之甲癸癸辛两边并大于甲辛一边【一卷二十】而甲癸癸辛与甲壬等则甲壬大于甲辛依显甲壬更大于甲庚甲己而过心之甲壬最大 次论曰甲癸辛角形之癸辛与甲癸庚角形之癸庚两边等甲癸同边而甲癸辛角大于甲癸庚角【全大于分】则对大角之甲辛边大于对小角之甲庚边【一卷廿四】依显甲庚大于甲己而规内线愈离心愈小 三论曰甲癸丙角形之甲癸一边 小于甲丙丙癸两边并【一卷二十】次每 减一相等之乙癸丙癸则甲乙小 于甲丙矣依显甲乙更小于甲丁 甲戊而规外甲乙最小 四论曰甲丁癸角形之内从甲与癸出甲丙丙癸两边并小于甲丁丁癸两边并【一卷廿一】此二率者每减一相等之丙癸丁癸则甲丙小于甲丁矣依显甲丙更小于甲戊而愈近径余甲乙者愈小 后论曰试依乙癸丙作乙癸子相等角抵圜界次作甲子线其甲子癸角形之甲癸癸子两腰与甲癸丙角形之甲癸癸丙两腰各等而两腰间角又等则对等角之甲子甲丙两底亦等也【一卷四】此外若有从甲出线在子之上即依第四论小于甲丙在子之下即大于甲丙故云甲乙两旁止可出甲丙甲子两线等第九题 圜内从一防至界作三线以上皆等即此防必圜心解曰从甲防至乙丙丁圜界作甲乙甲丙甲丁三直线若等题言甲防为圜心三以上等者更不待论 论曰试于乙丙丙丁界作乙丙丙丁两直线相聨此两线各两平分于戊于己从甲出两直线为甲戊为甲己其甲乙戊角形 之甲乙与甲戊丙角形之甲丙两腰既等甲戊同腰乙戊戊丙两底又等即甲戊乙与甲戊丙两角亦等【一卷八】为两直角依显甲己丙甲己丁亦等为两直角则甲戊甲己之分乙丙丙丁俱平分为直角而此两线俱为函心线【本篇一之系】定相遇于甲甲为圜心矣又论曰若言甲非心心在于戊者令戊甲相聨引作己庚径线即甲是戊心外所取一防而从甲所出线愈近心者宜愈大矣 【本篇七】则甲丁宜大于甲丙而先设等何也 第十题 两圜相交止于两防 论曰若言甲乙丙丁戊己圜与甲庚乙丁辛戊圜三相交于甲于乙于丁令作甲乙乙丁两直线相联此两线各两平分于壬于癸次从壬癸作子壬子癸两垂线其子 壬分甲乙子癸分乙丁既皆两平分而各为两直角即子壬子癸两线俱为甲庚乙丁辛戊圜之函心线【本篇一之系】而子为其心矣依显甲乙丙丁戊己圜亦以子为心也夫两交之圜尚不得同心【本篇五】何縁得有三交 又论曰若言两圜三相交于甲于乙于丁令先寻甲庚乙丁辛戊圜之心于壬【本篇一】次从心至三交界作壬甲壬乙壬丁三线此三线等也【一卷界説十五】又甲乙丙丁戊己圜内有从壬出之壬甲壬乙壬丁三相等线 则壬又为甲乙丙丁戊己圜之心【本篇九】不亦交圜同心乎【本篇五】 第十一题 两圜内相切作直线联两心引出之必至切界 解曰甲乙丙甲丁戊两圜内相切于甲而己为甲乙丙之心庚为甲丁戊之心题言作直线聨庚己两心引抵圜界必至甲 论曰如云不至甲而截两圜界于乙丁及丙戊令从甲作甲己甲庚两线其甲己庚角形之庚己己甲两邉并大于庚甲一邉【一卷二十】而同圜心所出之庚甲庚丁宜等即庚己己甲大于庚丁矣此二率者各减同用之庚己即己甲亦大于己丁矣夫己甲与己乙是内圜同心所出等线则己乙亦大于己丁而分大于全也可乎若曰庚为甲乙丙心己为甲丁戊心亦依前转説之甲己庚角形之己庚庚甲两邉并大于甲己一邉【一卷二十】而同圜心所出之己甲己戊宜等即己庚庚甲大于己戊矣此二率者各减同用之己庚即庚甲大于庚戊矣夫庚甲与庚丙是内圜同心所出等线则庚丙 亦大于庚戊而分大子全也可乎 第十二题 两圜外相切以直线联两心必过切界 解曰甲乙丙丁乙戊两圜外相切于乙其甲乙丙心为己丁乙戊心为庚题言作己庚直线必过乙论曰如云不然而己庚线截两圜界于戊于丙令于切界作乙己乙庚两线其乙己庚角形之己乙乙庚两边并大于己庚一边而乙 庚与庚戊乙己与己丙俱同心所出线宜各等即庚戊丙己两线并亦大于庚己一线矣【一卷二十】夫庚己线分为庚戊丙己尚余丙戊而云庚戊丙己大于庚己则分大于全也故直线聨己庚必过乙 第十三题【二支】 圜相切不论内外止以一防 先论曰甲乙丙丁与甲戊丙己两圜内相切若云有两防相切于甲又于丙令作直线函两圜心庚辛引出之如前图宜至相切之甲之丙【本篇十一】则甲丙为两圜之同径矣而此径线者两平分于庚又两平分于辛何也【一直线止以一防两平分】若云庚辛引出直线 一抵甲一截两圜之界于癸于壬即如后图令从两心各作直线至又相切之丙次问之甲乙丙丁圜之心为庚邪辛邪如曰庚也而辛为甲戊内己之心则丙庚辛角形之庚辛辛丙两边并大于庚丙一边【一卷二十】而庚辛辛丙与庚癸宜等【辛癸辛丙同圜心所出故】即庚癸亦大于庚丙矣夫庚丙与庚壬者外圜同心所出等线也将庚癸亦大于庚壬可乎如曰辛也而庚为甲戊丙己之心则丙庚辛角形之辛庚庚丙两边并大于辛丙一边【一卷二十】而辛丙与辛甲宜等即辛庚庚丙亦大于辛甲矣此二率者各减同用之辛庚即庚丙亦大于庚甲也夫庚甲与庚丙者亦同圜心所出等线也而安有大小 后论曰甲乙与乙丙两圜外相切于已从甲乙之丁心丙乙之戊心作直线相聨必过已【本篇十三】若云又相切于乙令自乙至丁至戊各 作直线其丁乙乙戊并宜与丁戊等而为角形之两腰又宜大于丁戊【一卷二十】则两圜相切安得两防又后论曰更令于两相切之乙之己作直线相聨其直线当在甲乙圜内【本篇二】又当在乙丙圜内何所置之 第十四题【二支】 圜内两直线等即距心之逺近等距心之逺近等即两直线等 先解曰甲乙丙丁圜其心戊圜内甲乙丁丙两线等题言两线距戊心逺近亦等 论曰试从戊心向甲乙作戊己向丁丙作戊庚各垂线次自丁自甲至戊各作直线其戊己戊庚既各分甲乙丁丙线为两平 分【本篇三】而甲乙丁丙等则平分之甲己丁庚亦等夫甲戊上直角方形与甲己己戊上两直角方形并等【一卷四七】等甲戊之丁戊上直角方形与丁庚庚戊上两直角方形并等而甲己丁庚上两直角方形既等即戊己戊庚上两直角方形亦等则戊己戊庚两线亦等是甲乙丁丙两线距心之度等【本卷界説四】 后解曰甲乙丁丙两线距戊心逺近等题言甲乙丁丙两线亦等 论曰依前论从戊作戊己戊庚两垂线既等【本卷界説四】而分甲乙丁丙各为两平分【本篇三】其甲戊上直角方形与甲己己戊上两 直角方形并等【一卷四七】等甲戊之丁戊上直角方形与丁庚庚戊上两直角方形并等即甲己己戊上两直角方形并与丁庚庚戊上两直角方形并亦等此二率者每减一相等之己戊戊庚上直角方形即所存甲己丁庚上两直角方形亦等是甲己丁庚两线等也夫甲乙倍甲己丁丙倍丁庚其半等其全必等第十五题 径为圜内之大线其余线者近心大于逺心 解曰甲乙丙丁戊己圜其心庚其径甲己其近心线为辛壬逺心线为丙丁题言甲乙最大辛壬近心大 于丙丁逺心 论曰试从庚向丙丁作庚癸向辛壬作庚子各垂线其丙丁距心逺于辛壬即庚癸 大于庚子【本卷界説四】次于庚癸线截庚丑与庚子等次从丑作乙戊为庚癸之垂线末于庚乙庚丙庚丁庚戊各作直线相联其庚丑既等于庚子即乙戊与辛壬各以垂线距心逺近等【本卷界説四】而两线亦等【本篇十四】夫庚乙庚戊并大于乙戊【一卷二十】而与甲己等即甲己大于乙戊亦大于辛壬矣依显甲己大于他线则甲己最大又乙庚戊角形之乙庚庚戊两腰与丙庚丁角形之丙庚庚丁两 腰等而乙庚戊角大于丙庚丁角则乙戊底大于丙丁底【一卷廿四】故等乙戊之辛壬亦大于丙丁也是近心线大于逺心线也 第十六题【三支】 圜径末之直角线全在圜外而直线偕圜界所作切边角不得更作一直线入其内其半圜分角大于各直线鋭角切边角小于各直线鋭角 先解曰甲乙丙圜丁为心甲丙为径从甲作甲丙之垂线题言此线全在圜外论曰若言在内如甲乙令自丁至乙作 直线即丁甲乙与丁乙甲两角等【一卷五】丁甲既为直角丁乙又为直角乎夫角形三角并等两直角【一卷十七】岂得形内自有两直角也则垂线必在圜外若己戊必不在圜内若甲乙又不在圜界之上【如云在界亦依此论】故曰全在圜外 次解曰题又言戊甲垂线偕乙甲圜界所作切边角不得更作一直线入其内 论曰若云可作如庚甲令从丁心向庚甲作丁辛为庚甲之垂线【一卷十二】夫丁甲辛角形之丁甲辛丁辛甲两角并小于 两直角【一卷十七】而丁辛甲为直角即对小角之丁辛线小于对大角之甲丁线矣【一卷十九】甲丁者与丁壬为同圜相等者也将丁壬亦大于丁辛乎则戊甲乙角之内不得更作一直线而戊甲之下但有直线必入本圜之内也 后解曰题又言丁甲垂线偕乙甲圜界所作丙甲乙圜分角大于各直线鋭角而戊甲垂线偕乙甲圜界所作切边角小于各直线鋭角 论曰依前论甲戊下有直线既云必入圜内即此直线偕戊甲所作各直线鋭角皆小于圜分角而切边角小于各直线鋭角 系己甲线必切圜以一防 増先解曰甲乙丙圜其心丁其径甲 丙从甲作戊甲为甲丙之垂线题言 戊甲全在圜外 増正论曰试于甲戊线内任取一防为庚自庚至丁作直线其甲丁庚角形之丁甲庚丁庚甲两角小于两直角【一卷十七】而丁甲庚为直角即丁庚甲小于直角对大角之丁庚线大于对小角之丁甲线矣【一卷十九】则庚防在圜之外也凡戊甲以内作防皆 依此论故戊甲线全在圜外 増次解曰从甲作甲辛线在戊甲之 下题言甲辛必割圜为分 増正论曰试作甲丁壬角与戊甲辛角等其甲丁壬辛甲丁两角并等于戊甲丁直角必小于两直角而丁壬甲辛两线必相遇【分论十一】其相遇又必在圜之内如壬何者壬甲丁壬丁甲两角既与一直角等即甲壬丁必为直角【一卷卅二】而对大角之甲丁线必大于对小角之丁壬线矣【一卷十九】夫甲丁线仅至圜界则丁壬不能抵圜界必在圜之内也后支前已正论 或难曰切边角有大有小何以毕不得两分向者闻几何之分不可穷尽如庄子尺棰之义深着明矣今切边之内有角非几何乎此几何何独不可分邪又十卷第一题言设一小几何又设一大几何若从大者半减之减之又减必至一处小于所设小率此题最明无可疑者今言切边之角小于直线鋭角是亦小几何也彼直线鋭角是亦大几何也若从直线鋭角半减之减之又减何以终竟不得小于切边角邪既本题推显切边角中不得容一直线如此着明便当并无切边角无角则无几何此则不可得分耳且几何原本书中无有至大不可加之率无有至小不可减之率若切边角不可分岂非至小不可减乎答曰谬矣子之言也有圜有线安得无切边角且既言直线鋭角大于切边角即有切边角矣苟无角安所较大小哉且 子言直线与圜界并无切边角 则两圜外相切亦无角乎曰然 曰试如作甲己乙圜其心丙而 丁戊为切线即丁甲己为切边角次移心于庚又作甲辛癸圜即丁甲辛为切边角而小于丁甲己次移心于子又作甲丑寅圜即丁甲丑为切边角而又小于丁甲辛如是小之又小疑无角焉次又于切线之外以辰为心作甲己午圜而与前圜外相切于甲依子所説疑无角焉然两圜外相切而以丁戊线分之不可分乎更自辰至寅作直线截两圜之界而分丁戊为两平分不可分乎两圜两直线交罗相遇于甲也能不皆以一防乎如以一防也即此一防之外不能无空即不能不为四切边角矣子所据尺棰之分无尽又言几何原本书中无至小不可减之率也是也夫切边角但不可以直线分之耳若用圜线则可分矣如甲乙庚圜与丙甲丁直线相切于甲作丁甲庚切边大角若移一心作甲戊辛 圜又得丁甲辛切边角即小于丁甲庚也又移一心作甲己壬圜又得丁甲壬切边小角即又小于丁甲辛也如此以至无穷则切边角分之无尽何谓不可减邪若十卷第一题所言元无可疑但以圜角分圜角则与其説合矣彼所言大小两几何者谓夫能相较为大能相较为小者也如以直线分直线角以圜线分圜线角是已此切边角与直线角岂能相较为大小哉 増题有两种几何一大一小以小率半増之递増至于无穷以大率半减之递减至于无穷其元大者恒大元小者恒小 解曰戊甲乙切边角为小率壬庚辛直线鋭角为大率今别作甲丙甲丁等圜俱切戊己线于甲其切边角愈増愈大如前论别以庚癸庚子线作角分壬庚辛角于庚愈分愈小然直线角恒大切 边角恒小乃至终古不得相比 又増题旧有一説以一小率加一大率之上或以一大率加一小率之上不相离逐线渐移之必至一相等之处又一説有率大于此率者有率小于此率者则必有率等于此率者昔人以为皆公论也若用以律本题即不可得故今斥不为公论解曰甲乙丙圜其径甲丙令甲丙之甲界定在于甲而引丙线逐线渐移之向已其所经丁戊己及中间逐线所经无 数然依本题论则甲丙所经凡割圜时皆为鋭角即小于半圜分角才离鋭角便为直角即大于半圜分角是所经无数线终无有相等线可见前一旧説未为公论又直线鋭角皆小于半圜分角直角与钝角皆大于半圜分角是有大者有小者终无等者可见后一旧説未为公论也 第十七题 设一防一圜求从防作切线 法曰甲防求作直线切乙丙圜其圜心丁先从甲作甲丁直线截乙丙圜于乙次以丁为心甲为界作甲戊圜次从乙作甲丁 之垂线而遇甲戊圜于戊次作戊丁直线而截乙丙圜于丙末作甲丙直线即切乙丙圜于丙 论曰乙戊丁角形之戊丁丁乙两腰与甲丙丁角形之甲丁丁丙两腰各等【一卷界説十五】丁角同即甲丙乙戊两底亦等【一卷四】而戊 乙丁为直角即甲丙丁亦直角则甲丙偕乙丙圜之半径丁丙为一直角矣岂非圜之切线【本篇十六之系】第十八题 直线切圜从圜心作直线至切界必为切线之垂线解曰甲乙直线切丙丁圜于丙从戊心至切界作戊丙线题言戊丙为甲乙之垂线论曰如云不然令从戊别作垂线如至已 而截丙丁圜于丁其丙戊己角形之戊己丙既为直角即宜大于己丙戊角【一卷十七】而对大角之戊丙边宜大于对小角之戊己边矣【一卷十九】夫戊丙与戊丁等也戊丙大于戊已则戊丁亦大于戊己乎 又论曰若云丙非直角即其两旁角一鋭一钝令乙丙戊为鋭角则鋭角乃大于半圜分角乎【本篇十六】第十九题 直线切圜圜内作切线之垂线则圜心必在垂线之内解曰甲乙线切丙丁戊圜于丙圜内作戊丙为甲乙 之垂线题言圜心在戊丙线内 论曰如云不然心在于已令从已作己丙直线即己丙亦为甲乙之垂线【本篇十八】而已 丙甲与戊丙甲等为直角是全与其分等矣 第二十题 负圜角与分圜角所负所分之圜分同则分圜角必倍大于负圜角 解曰甲乙丙圜其心丁有乙丁丙分圜角乙甲丙负圜角同以乙丙圜分为底题言乙丁丙角倍大于乙甲丙角 先论分圜角在乙甲甲丙之内者曰如上图试从甲过丁心作甲戊线其甲丁乙角形之丁甲丁乙等即丁甲乙丁乙甲两角 等【一卷五】而乙丁戊外角与内相对两角并等【一卷卅二】即乙丁戊倍大于乙甲丁矣依显丙丁戊亦倍大于丙甲丁则乙丁丙全角亦倍大于乙甲丙全角 次论分圜角不在乙甲甲丙之内而甲乙线过丁心者曰如上图依前论推显乙丁丙外角等于内相对之丁甲丙丁丙甲两 角并【一卷卅二】而丁甲丁丙两腰等即甲丙两角亦等【一卷五】则乙丁丙角倍大于乙甲丙角 后论分圜角在负圜角线之外而甲乙截丁丙者曰如上图试从甲过丁心作甲戊线其戊丁丙分圜角与戊甲丙负圜角同 以戊乙两圜分为底如前次论戊丁丙角倍大于戊甲丙角依显戊丁乙分圜角亦倍大于戊甲乙负圜角次于戊丁丙角减戊丁乙角戊甲丙角减戊甲乙角则所存乙丁丙角必倍大于乙甲丙角 増若乙丁丁丙不作角于心或为半圜或小于半圜则丁心外余地亦倍大于同底之负圜角 论曰试从甲过丁心作甲戊线即丁心外余地分为乙丁戊戊丁丙两角依前论推显此两角倍大于乙甲丁丁甲丙两角 第二十一题 凡同圜分内所作负圜角俱等 解曰甲乙丙丁圜其心戊于丁甲乙丙圜分内任作丁甲丙丁乙丙两角题言此两角等 先论函心大分所作曰试从戊作戊丁戊丙线其丁戊丙分圜角既倍大于丁甲丙角丁乙丙角【本篇十二】即 甲乙两角自相等【公论七】 后论半圜分不函心小分所作曰丁甲乙丙或为半圜分或为不函心小分俱从甲从乙过戊作甲己乙庚两线若不函心更从戊作戊丁戊丙两线其丁戊己分圜角既倍大于丁甲己负圜角【本篇二十】依显丙戊 己分圜角亦倍大于丙甲己负圜角而丁戊庚庚戊己两角与丁戊己一角等则丁戊庚庚戊己己戊丙三角必倍大于丁甲丙依显此三角亦倍大于丁乙丙则丁甲丙丁乙丙两角自相等 又后论曰二十题増言分圜不作角其心外余地倍 大于同底各负圜角即各角自相等又后论曰甲丙乙丁线交罗相遇为已试作甲乙线相联其甲丁己角形之三角并与乙丙己角形之三角并等【一卷卅二】次每减一交角相等之甲己丁乙己丙【一卷十五】即己甲丁己丁甲两角并与己丙乙己乙丙两角并等矣而甲丁乙乙丙甲两角同在甲丁丙乙函心大分内又等【本题第一论】则丁甲丙与丙乙丁亦等 又后论曰丁丙之外任取一界为已作丁己丙己两线令俱函心而丁甲乙丙己与丙乙甲丁己俱为大分次于甲己乙己各作直线相聨其丁甲已与丁乙己两角同负于甲乙丙己圜界即等【本题第一论】依显丙乙己与丙甲已两角同负丙乙甲丁己圜界又等此二相等率并之则丁甲丙丁乙丙两全角亦等 第二十二题 圜内切界四边形每相对两角并与两直角等 解曰甲乙丙丁圜其心戊圜内有甲乙丙丁四边形题言甲乙丙丙丁甲两角并乙丙丁丁甲乙两角并各与两直角等 论曰试作甲丙乙丁两对角线其甲乙丁甲丙丁两角同负甲乙丙丁圜分即等【本篇廿一】依显丙甲丁丙乙丁两角亦等则甲乙丁丙乙丁两角并为甲乙丙一角与甲丙 丁丙甲丁两角并等次每加一丙丁甲角即甲乙丙丙丁甲并与甲丙丁丙甲丁丙丁甲三角并等此三角并元与两直角等【一卷卅二】则甲乙丙丙丁甲相对两角并与两直角等依显乙丙丁丁甲乙并亦与两直角等 第二十三题 一直线上作两圜分不得相似而不相等 论曰如云不然令于甲乙线上作同方两圜分相似而不相等必作甲丙乙又作甲丁乙其两圜相交止于甲乙两防【本篇十】即 一圜分全在内一圜分全在外矣次令作甲丁线截甲丙乙圜于丙末令作丙乙丁乙两线相聨夫两圜分相似者其负圜角宜等【本卷界説十】则乙丙甲外角与相对之乙丁甲内角等乎【一卷十六】 第二十四题 相等两直线上作相似两圜分必等 解曰甲乙丙丁两线上作甲丙乙丙己丁相似两圜分题言两圜分等 论曰甲乙丙丁两线既等试以甲乙线加丙丁线上两线必相合即甲丙乙丙己丁两圜分相加亦相合如云不然必两圜分相加或在内或在外或半在内半在外矣若在内在外即一直线上有两圜分相似而不相等也【本篇廿三】若半在内半在外即两圜三相交也【本篇十】两俱不可故相似者必 等 第二十五题 有圜之分求成圜 法曰甲乙丙圜分求成圜先于分之两端作甲丙线次作乙丁为甲丙之垂线次作甲乙线相联其丁乙甲角或大于丁甲乙角或等 或小若大即甲乙丙当为圜之小分何也乙丁分甲丙为两平分即知圜之心必在乙丁线内【本篇一之系】而心在丁防之外则从丁防所出丁乙为不过心径线至小【本篇七】故对小边之丁甲乙角小于对大边之丁乙甲角也【一卷十八】即作乙甲戊角与丁乙甲角等次从乙丁引出一线与甲戊线遇于戊即戊为圜心论曰试从戊作戊丙线其甲丁戊角形之甲丁线与丙丁戊角形之丙丁线等丁戊同线而甲丁戊丙丁戊两皆直角即对直角之甲戊与戊丙两线等【一卷四】夫甲戊与乙戊以对角等故既等【一卷六】戊丙与甲戊又等则从戊至界三线皆等而戊为心【本篇九】 次法兼论曰若丁乙甲丁甲乙两角等即甲乙丙为半圜而甲丙为径丁为心何也丁乙丁甲两边等然后丁乙甲丁甲乙两角等【一卷】 【五】今丁乙甲丁甲乙两角既等即丁乙丁甲两线必等【一卷六】丁丙元与丁甲等则从丁所出三线等而丁 为圜心【本篇九】 后法曰若丁乙甲小于丁甲乙即甲乙丙当为圜大分何也乙丁分甲丙为两平分 即知圜心在乙丁线内【本篇一之系】而丁防在心之外则所出丁乙为过心径线至大【本篇七】故对大边之丁甲乙大于对小边之丁乙甲也【一卷十八】即作乙甲戊角与丁乙甲角等而甲戊线与乙丁线遇于戊即戊为圜心 论曰试从戊作戊丙线其甲丁戊角形之甲丁线与丙丁戊角形之丙丁线等丁戊同线而甲丁戊丙丁戊两皆直角即对直角之甲戊戊丙两线亦等【一卷四】夫乙戊与甲戊以对角等故既等【一卷五】戊丙与甲戊亦等则从戊至界三线皆等而戊为心【本篇九】 増求圜分之心有一简法于甲乙丙圜分任取三防于甲于乙于丙以两直线联之各两平分于丁于戊从丁从戊作 甲乙乙丙之各垂线为己丁为己戊而相遇于己即已为圜心 论曰己丁己戊既各以两直角平分甲乙乙丙两线即圜之心当在两垂线内【本篇一】而相遇于已即已为圜心 其用法圜界上任取四防为甲为乙为丙为丁每两防各自为心相向各任作圜分四圜分两两相交于戊于己于庚于辛从戊己从庚辛各作直线引长之 交于壬即壬为圜心 论曰试作甲戊戊乙乙己己甲四直线此四线各为同圜等圜之半径各等即甲戊己角形之甲戊己甲己戊两角等而乙戊己角形之乙戊己乙己戊两角亦等次作甲乙直线分戊己于癸即甲己癸角形之甲己边与乙己癸角形之乙己边等己癸同边而对甲己癸角之甲癸边与对乙己癸角之乙癸边亦等【一卷八】则甲癸己乙癸己俱为直角而戊己线必过心【本篇一】依显庚辛线亦过心而相遇于壬为圜心 第二十六题【二支】 等圜之乘圜分角或在心或在界等其所乘之圜分亦等 先解在心者曰甲乙丙丁戊己两圜等其心为庚为辛有甲庚丙与丁辛己两乘圜角等题言所乘之甲丙丁己两圜分亦等论曰试于甲乙丙丁戊己两圜分之上任取两防于乙于戊从乙作乙甲乙丙从戊作戊丁戊己各两线次作甲丙丁己两线相联其乙与戊两角既各半于庚辛两角即乙与戊自相等【本篇二十】而所负甲乙丙与丁戊己两圜分相似【本卷界説十】又甲庚丙角形之甲庚庚丙两边与丁辛己角形之丁 辛辛己两边各等庚角与辛角又等即甲丙与丁己两边亦等【一卷四】而相似之甲乙丙与丁戊己两圜分在等线上亦等【本篇卄四】夫相等圜减相等圜分则所存甲丙丁己两圜分亦等故云等角所乗之圜分等后解在界者曰两圜之乙与戊两乘圜角等题言所乘之甲丙丁己两圜分亦等 论曰乙戊两角既等而庚辛两角各倍于乙戊即庚辛自相等【本篇二十】依前论甲丙丁己两边亦自相等而甲乙丙与丁戊己两圜分亦等【本篇廿四】今于相等圜减相等圜分则所存甲丙丁己两圜分亦等 注曰后解极易明葢庚辛角既各倍于乙戊则依先论甲丙丁己自相等【在心之乘圜角即分圜角随类异名】 第二十七题【二支】 等圜之角所乘圜分等则其角或在心或在界俱等 先解在心者曰甲乙丙丁戊己两 圜等其心为庚为辛若甲庚丙乘 圜角所乘之甲丙分与丁辛己所乘之丁己分等题言甲庚丙丁辛己两角等 论曰如云不然而庚大于辛令作甲庚壬角与丁辛己角等即甲壬圜分宜与丁己圜分等【本篇廿六】而甲丙与丁己元等则甲壬与甲丙亦等乎 后解在界者曰甲丙丁己两圜分等题言其上乙戊两角亦等 论曰如云不然而乙大于戊令作甲乙壬角与戊角等其甲乙壬与丁戊己若等即所乘之甲壬丁己宜等【本篇廿六】而甲丙与丁己元等则甲壬与甲丙亦等乎増题从此推显两直线不相交而在一圜之内若两线界相去之圜分等则两线必平行若两线平行则两线界相去 之圜分等 先解曰甲乙丙丁圜内有甲丁乙丙两线其相去之甲乙丁丙两圜分等题言两线必平行 论曰试自甲至丙作直线相联其甲乙丁丙既等即甲丙乙与丙甲丁两乘圜角亦等【本题】既内相对之两角等即两线必平行【一卷廿七】 后解曰甲丁乙丙为平行线题言甲乙丁丙两圜分必等 论曰试作甲丙线其甲丁乙丙既平行 即内相对之两角甲丙乙丙甲丁必等【一卷廿七】而所乘圜分甲乙丁丙亦等【本篇廿六】 第二十八题 等圜内之直线等则其割本圜之分大与大小与小各等 解曰甲乙丙丁戊己两圜等其心为庚为辛圜内有甲丙丁己两直线等题言甲乙丙与丁戊己两大分甲丙与丁己两小分各等 论曰试于甲庚庚丙丁辛辛己各作直线其甲庚丙角形之甲丙与丁辛己角形之 丁己两底既等而甲庚庚丙两腰与丁辛辛己两腰又等即庚辛两角亦等【一卷八】其所乘之甲丙丁己两小分必等【本篇廿六】次减相等之甲丙丁己两小分则所存甲乙丙丁戊己两大分亦等 第二十九题 等圜之圜分等则其割圜分之直线亦等 解曰依前题两圜之甲乙丙丁戊 己两圜分等而甲丙丁己两圜分 亦等题言甲丙丁己两线必等 论曰依前题作四线其甲庚丙角形之甲庚庚丙两腰与丁辛己角形之丁辛辛己两腰等而庚辛两角所乘之甲丙丁己两圜分等即庚辛两角亦等【本篇廿七】而对等角之甲丙丁己两线必等【一卷四】 注曰第二十六至二十九四题所説俱等圜其在同圜亦依此论 第三十题 有圜之分求两平分之 法曰甲乙丙圜分求两平分先于分之两界作甲丙线次两平分于丁从丁作乙丁为甲丙之垂线即乙丁分甲乙丙圜分为 两平分 论曰从乙作乙甲乙丙两线其甲乙丁角形之甲丁与丙乙丁角形之丙丁两腰等丁乙同腰而甲丁乙与丙丁乙两直角又等即对直角之甲乙乙丙两底亦等【一卷四】而甲乙与乙丙两圜分亦等【本篇十八】则甲乙丙圜界两平分于乙矣 第三十一题【五支】 负半圜角必直角负大分角小于直角负小分角大于直角大圜分角大于直角小圜分角小于直角解曰甲乙丙圜其心丁其径甲丙于半圜分内任作甲乙丙角形即甲乙丙角负甲乙丙半圜分乙甲丙角负乙甲丙 大分又任作乙戊丙角负乙戊丙小分题先言负半圜之甲乙丙为直角二言负大分之乙甲丙角小于直角三言负小分之乙戊丙角大于直角四言丙乙甲大圜分角大于直角后言丙乙戊小圜分角小于直角 先论曰试作乙丁线次以甲乙线引长之至已其丁乙丁甲两线等即丁乙甲丁甲乙两角等【一卷五】依显丁乙丙丁丙乙两角亦等而甲乙丙全角与乙甲丙甲丙乙两角并等又己乙丙外角亦与相对之乙甲丙甲丙乙两内角并等【一卷卅二】则己乙丙与甲乙丙等为直角 二论曰甲乙丙角形之甲乙丙既为直角则乙甲丙小于直角【一卷十七】 三论曰甲乙戊丙四边形在圜之内其乙甲丙乙戊丙相对两角并等两直角【本篇廿二】而乙甲丙小于直角则乙戊丙大于直角 四论曰甲乙丙直角为丙乙甲大圜分角之分则大于直角 后论曰丙乙戊小圜分角为己乙丙直角之分则小于直角 此题别有四解四论先解曰甲乙丙半圜其心丁其上任作甲乙丙角题言此为直角论曰试作乙丁线其丁乙丁甲两线既等即 丁乙甲丁甲乙两角亦等【一卷五】而乙丁丙外角既与丁乙甲丁甲乙相对之两内角并等【一卷卅二】即倍大于丁乙甲角依显乙丁甲外角亦倍大于丁乙丙角即乙丁甲乙丁丙两角并亦倍大于甲乙丙角夫乙丁甲乙丁丙并等两直角【一卷十三】则甲乙丙为直角二解曰甲乙丙大圜分其心丁任作甲乙丙角题言此小于直角 论曰试作甲丁戊径线次作乙戊线相联 其甲乙戊既为直角【本题一论】即甲乙丙为其分而小于直角 三解曰甲乙丙小圜分其心丁任作甲乙丙角题言此大于直角 论曰试作甲丁戊径线而引乙丙圜界至 戊次作乙戊线其甲乙戊既负半圜之直角而为甲乙丙角之分则甲乙丙大于直角 四五合解曰甲乙丙大圜分丙丁甲小圜分其心戊题言丙甲乙大圜分角大于直角丙甲丁小圜分角 小于直角 论曰试作乙戊丙径线次作乙甲线引长之至己其乙甲丙直角为丙甲乙大 圜分角之分而丙甲丁小圜分角又为己甲丙直角之分则大分角大于直角小分角小于直角 一系凡角形之内一角与两角并等其一角必直角何者其外角与内相对之两角等则与外角等之内交角岂非直角 二系大分之角大于直角小分之角小于直角终无有角等于直角又从小过大从大过小非大即小终无相等依此题四五论甚明与本篇十六题増注互相发也 第三十二题 直线切圜从切界任作直线割圜为两分分内各任为负圜角其切线与割线所作两角与两负圜角交互相等 解曰甲乙线切丙丁戊圜于丙从丙任作丙戊直线割圜为两分两分内任作丙丁戊丙庚戊两负圜角题言甲丙戊角与丙庚戊角乙丙戊角与丙丁戊角交互相等 先论割圜线过心者曰如前图甲丙戊乙丙戊两皆直角【一卷十八】而丙庚戊丙丁戊两负半圜角亦皆直角【本篇卅一】则交互相等后论割圜线不过心者曰如后图试作丙己过心直线次作戊己线相联其己丙为甲乙之垂线【一卷十八】而丙戊己为直角【本篇卅一】即戊丙己戊己丙两角并等于一直角亦 等于甲丙己角矣此两率者各减同用之戊丙己角即所存戊己丙与甲丙戊等也夫戊己丙与丙庚戊元等【本卷廿一】则甲丙戊与丙庚戊交互相等又丙丁戊庚四边形之丙丁戊丙庚戊两对角并等两直角【本篇廿二】而甲丙戊乙丙戊两交角亦等两直角【一卷十三】此二率者各减一相等之甲丙戊丙庚戊则所存丙丁戊乙丙戊亦交互相等 第三十三题 一线上求作圜分而负圜分角与所设直线角等先法曰设甲乙线丙角求线上作圜分而负圜分角与丙等其丙角或直或鋭或钝若直角先以甲乙两平分于丁次以丁为心甲乙 为界作半圜圜分内作甲戊乙角即负半圜角为直角【本篇卅一】如所求 次法曰若设丙鋭角先于甲防上作丁甲乙鋭角与丙等次作戊甲为甲丁之垂线于甲乙之上次作己乙甲角与己甲乙角等而乙己线与甲戊线遇于己 即己乙己甲两线等【一卷六】末以己为心甲为界作甲庚圜必过乙即甲庚乙圜分内甲乙线上所作负圜角必为鋭角而与丙等 论曰试作甲庚乙角其甲己戊线过己心而丁甲又为戊甲之垂线即丁甲线切甲庚乙圜于甲【本篇十六之系】则丁甲乙与甲庚乙两角交互相等【本篇卅二】如所求后法曰若设辛钝角依前作壬甲乙钝角与辛等次作戊甲为壬甲之垂线余仿第二法而于甲乙线上作甲癸乙等即与辛等 后论同次 第三十四题 设圜求割一分而负圜分角与所设直线角等 法曰设甲乙丙圜求割一分而负圜分角与丁等先作戊己直线切圜于甲【本篇十七】次作已甲乙角与丁等即割圜之甲乙线上所作甲丙乙角负甲丙乙圜分而与丁等 何者已甲乙角与丁等亦与甲丙乙交互相等故【本篇卅二】 第三十五题 圜内两直线交而相分各两分线矩内直角形等解曰甲丙乙丁圜内有甲乙丙丁两线交而相分于戊题言甲戊偕戊乙与丙戊偕戊丁两矩内直角形等其两线或俱过心 或一过心一不过心或俱不过心若俱过心者其各分四线等即两矩内直角形亦等 先论曰圜内线独丙丁过己心者又有二种其一丙丁平分甲乙线于戊即丙戊线在甲乙上为两直角【本篇三】试作已乙线相联其丙丁线既两平分于己又任两分于戊即丙戊偕戊丁矩内直角形及已戊上直角方形并与等已 丁之已乙上直角方形等【二卷五】夫已乙上直角方形与已戊戊乙上两直角方形并等【一卷四七】即丙戊偕戊丁矩内直角形及已戊上直角方形并与已戊戊乙上两直角方形并亦等矣次每减同用之已戊上直角方形则所存丙戊偕戊丁矩内直角形不与戊乙上直角方形等乎戊乙与甲戊既等即甲戊偕戊乙矩内直角形与丙戊偕戊丁矩内直角形亦等次论曰若丙丁任分甲乙线于戊即以甲乙线两平分于庚次于庚已已乙各作直线相联即已庚为甲乙之垂线而成两直角【本篇三】其丙戊偕戊丁矩内直角形及巳戊上直角方形并与等已丁之已乙上直角方形等【二卷五】而已戊上直角方形与已 庚庚戊上两直角方形并等【一卷四七】已乙上直角方形与已庚庚乙上两直角方形并亦等则丙戊偕戊丁矩内直角形及已庚庚戊上两直角方形并与已庚庚乙上两直角方形并等次每减同用之已庚上直角方形即所存丙戊偕戊丁矩内直角形及庚戊上直角方形不与庚乙上直角方形等乎夫甲戊偕戊乙矩内直角形及庚戊上直角方形并亦与庚乙上直角方形等【二卷五】此二相等率者每减同用之庚戊上直角方形则丙戊偕戊丁与甲戊偕戊乙两矩内直角形等矣 后论曰圜内两线俱不过心者又有二种或一线平分或两俱任分皆从已心与戊相聨作直线引长之为庚辛线依上论甲戊偕戊乙矩内直角形不论甲乙线平分任分皆与过心之庚戊偕戊辛矩内直角形等又依上论丙戊偕戊丁矩内直角形 不论丙丁线平分任分亦与过心之庚戊偕戊辛矩内直角形等则甲戊偕戊乙与丙戊偕戊丁两矩内直角形等 第三十六题 圜外任取一防从防出两直线一切圜一割圜其割圜之全线偕规外线矩内直角形与切圜线上直角方形等 解曰甲乙丙圜外任取丁防从丁作丁乙线切圜于乙【本篇十七】作丁甲线截圜界于丙题言甲丁偕丙丁矩内直角形与丁乙上直角方形等 先论丁甲过戊心者曰试作乙戊线为丁乙之垂线【本篇十八】其甲丙线平分于戊又引出一丙丁线即甲丁偕丙丁矩内直角形 及等戊丙之戊乙上直角方形并与戊丁上直角方形等【二卷六】而戊丁上直角方形与戊乙丁乙上两直角方形并等【一卷四七】即甲丁偕丙丁矩内直角形及戊乙上直角方形与戊乙丁乙上两直角方形并等此两率者每减同用之戊乙上直角方形则所存甲丁偕丙丁矩内直角形与丁乙上直角方形等 后论丁甲不过戊心者曰试 以甲丙线两平分于已次从 戊心作戊已戊丙戊丁戊乙 四线即戊乙为丁乙之垂线【本篇十八】戊已为甲丙之垂线【本篇三】其甲丙线既两平分于已又引出一丙丁线即甲丁偕丁丙矩内直角形及已丙上直角方形并与已丁上直角方形等【二卷六】次每加一戊已上直角方形即甲丁偕丁丙矩内直角形及已丙戊已上两直角方形并与己丁戊己上两直角方形并等夫己丙戊己上两直角方形并与等戊丙之戊 乙上直角方形等【一卷四七】而戊丁上直角方形与己丁戊己上两直角方形并等即甲丁偕丁丙矩内直角形及戊乙上直角方形与戊丁上直角方形等矣又戊丁上直角方形与戊乙丁乙上两直角方形并等即甲丁偕丁丙矩内直角形及戊乙上直角方形并与戊乙丁乙上两直角方形并等次每减同用之戊乙上直角方形则所存甲丁偕丁丙矩内直角形与 丁乙上直角方形等 一系若从圜外一防作数线至规内各全线偕规外线矩内直角形俱等如从甲作 甲丙甲丁甲戊各线截圜界于己于庚于辛其甲丙偕己甲甲丁偕庚甲甲戊偕辛甲各矩内直角形俱等何者试作甲乙切圜线则各矩线内直角形与甲乙上直角方形俱等故【本题】 二系从圜外一防作两直线切圜此两线等如甲防作甲乙甲丙两切圜线即甲丙与甲乙等何者试从甲作甲丁线截圜界 于戊其甲乙甲丙上两直角方形各与甲丁偕甲戊矩内直角形等【本题】则此两直角方形自相等 三系从圜外一防止可作两直线切圜若言从甲既作甲乙甲丙两线切圜又可作甲丁线亦切圜令从戊心作戊乙戊丁两 线即甲乙戊为直角而甲丁戊亦宜等为直角【本篇十八】试作甲戊直线则甲乙戊角形内有甲丁戊角应大于甲乙戊角【一卷廿一】安得为直角也又甲乙甲丁若俱切圜即两线宜等【本题二系】试作甲戊线截圜于己则甲丁为近己线甚小当小于逺己之甲乙线【本篇八】又安得相等也故一防上止可作切圜线两也 第三十七题 圜外任于一防出两直线一至规外一割圜至规内而割圜全线偕割圜之规外线矩内直角形与至规外之线上直角方形等则至规外之线必切圜 解曰甲乙丙圜其心戊从丁防作丁乙至规外之线遇圜界于乙又作丁甲割圜至规内之线而截圜界于丙其丁甲偕丁丙矩内直角形与丁乙上直角方形等题言丁乙为切圜线论曰试从丁作丁己线切圜于己【本篇十七】次作戊乙戊己两线相联若丁甲不过戊心者又作丁戊直线其丁己上直角方形与丁甲偕丁丙矩内直角形等【本篇卅六】而丁乙 上直角方形与丁甲偕丁丙矩内直角形亦等则丁乙丁己上两直角方形自相等而丁乙丁己两线亦等夫丁乙戊角形之丁乙乙戊与丁己戊角形之丁己己戊各两腰等丁戊同底即两角形之三角各等【一卷八】而对丁戊底之丁己戊为直角【本篇十八】即丁乙戊亦直角故丁乙为切圜线【本篇十六之系】 几何原本卷三 钦定四库全书 [book_title]几何原本卷四之首 西洋利玛窦译 界说七则 第一界 直线形居他直线形内而此形之各角切他形之各邉为形内切形 此卷将论切形在圜之内外及作圜在形之内外故解形之切在形内及切在形外者先以直线形为例如前图丁戊己角形之丁戊己三角切甲乙丙角形之甲乙乙丙丙甲三邉则丁戊己为甲乙丙之形内切形如后图癸子丑角形虽癸子两角切庚辛壬角形之庚辛壬庚两邉而丑角不切辛壬邉 则癸子丑不可谓庚辛壬之形内切形 第二界 一直线形居他直线形外而此形之各邉切他形之各角为形外切形 如第一界图甲乙丙为丁己戊之形外切形 其余各形仿此二例 第三界 直线形之各角切圜之界为圜内切形 甲乙丙形之三角各切圜界于甲于乙于丙是也 第四界 直线形之各邉切圜之界为圜外切形 甲乙丙形之三邉切圜界于丁于己于戊是也 第五界 圜之界切直线形之各邉为形内切圜 同第四界图 第六界 圜之界切直线形之各角为形外切圜 同第三界图 第七界 直线之两界各抵圜界为合圜线 甲乙线两界各抵甲乙丙圜之界为合圜线若丙抵圜而丁不至及戊之两俱不至不为合圜线 几何原本卷四之首 钦定四库全书 [book_title]几何原本卷四 西洋利玛窦撰 第一题 有圜求作合圜线与所设线等此设线不大于圜之径线法曰甲乙丙圜求作合线与所设丁线等其丁线不大于圜之径线【径为圜内之最大线更大不可合见三卷十五】先作甲乙圜径为乙丙若乙丙与 丁等者即是合线若丁小于径者即于乙丙上截取乙戊与丁等次以乙为心戊为界作甲戊圜交甲乙丙圜于甲末作甲乙合线即与丁等何者甲乙与乙戊等则与丁等 第二题 有圜求作圜内三角切形与所设三角形等角 法曰甲乙丙圜求作圜内三角切形其三角与所设丁戊己形之三角各等先作庚辛线切圜于甲【三卷十七】次作庚甲乙角与设形之己角等次作辛甲丙角与设形之戊角等末作乙丙线即圜内三角切形与所设丁戊己形等角论曰甲丙乙与庚甲乙两角等甲乙丙与 辛甲丙两角亦等【三卷卅二】而庚甲乙辛甲丙两角既与所设己戊两角各等即甲丙乙甲乙丙亦与己戊各等而乙甲丙必与丁等【一卷卅二】则三角俱等 第三题 有圜求作圜外三角切形与所设三角形等角 法曰甲乙丙圜求作圜外三角切形其三角与所设丁戊己形之三角各等先于戊己一邉引长之为庚辛次于圜界抵心作甲壬线次作甲壬乙角与丁戊庚等次作乙壬丙角与丁己辛等末于甲乙丙上作 癸子子丑丑癸三垂线此三线各切圜于甲于乙于丙【三卷十六之系】而相遇于子于丑于癸【若作甲丙线郎癸甲丙癸丙甲两角小于两直角而子癸丑癸两线必相遇余二仿此】此癸子丑三角与所设丁戊己三角各等 论曰甲壬乙子四邉形之四角与四直角等【一卷卅二题内】而壬甲子壬乙子两为直角即甲壬乙甲子乙两角并等两直角彼丁戊 庚丁戊己两角并亦等两直角【一卷十三】此二等率者每减一相等之丁戊庚甲壬乙则所存丁戊己与甲子乙等依显丑角与丁己戊等则癸与丁亦等【一卷卅二】而癸子丑与丁戊己两形之各三角俱等 第四题 三角形求作形内切圜 法曰甲乙丙角形求作形内切圜先以甲乙丙角甲丙乙角各两平分之【一卷九】作乙丁丙丁两直线相遇于丁次自丁至角形之三邉各作垂线为丁己丁庚丁戊其戊丁乙角形 之丁戊乙丁乙戊两角与乙丁己角形之丁己乙丁乙己两角各等乙丁同邉即丁戊丁己两邉亦等【一卷廿六】依显丁丙己角形与丁庚丙角形之丁己丁庚两邉亦等即丁戊丁己丁庚三线俱等末作圜以丁为心戊为界即过庚己为戊庚己圜而切角形之甲乙乙丙丙甲三邉于戊于己于庚【三卷十六之系】此为形内切圜 第五题 三角形求作形外切圜 法曰甲乙丙角形求作形外切圜先平分两邉【若形是直角钝角则分直角钝角之两旁邉】于丁于戊次于丁戊上各作垂线为己丁己戊而相遇于己【若自丁至戊作直线即己丁戊角形之己丁戊己戊丁两角小于两直角故丁己戊己两线必相遇】其己防或在形内或在形外俱作己甲己乙己丙三线或在乙丙邉上止作己甲线其甲丁己角形之甲丁与乙丁己角形之乙丁两腰等丁己同腰而丁之两旁角俱直角即甲己己乙两底必等【一卷四】依显甲己戊丙己戊两形之甲己己丙两底亦等则己甲己乙己丙三线俱等末作圜以己为心甲 为界必切丙乙而为角形之形外切圜 一系若圜心在三角形内即三角形为锐角形何者每角在圜大分之上故若在一邉之上即为直角形若在形外即为钝角形 二系若三角形为锐角形即圜心必在形内若直角形必在一邉之上若钝角形必在形外 増从此推得一法任设三防不在一直线可作一过三防之圜其法先以三防作三直线相联成三角形次依前作 其同法甲乙丙三防先以甲乙两防 各自为心相向各任作圜分令两圜 分相交于丁于戊次甲丙两防亦如 之令两圜分相交于己于庚末作丁 戊己庚两线各引长之令相交于辛即辛为圜之心 论见三卷二十五增 第六题 有圜求作内切圜直角方形 法曰甲乙丙丁圜其心戊求作内切圜直角方形先作甲丙乙丁两径线以直角相交于 戊次作甲乙乙丙丙丁丁甲四线即甲乙丙丁为内切圜直角方形 论曰甲乙戊角形之甲戊与乙戊丙角形之戊丙两腰等乙戊同腰而腰间角两为直角即其底甲乙乙丙等【一卷四】依显乙丙丙丁亦等则四邉形之四邉俱等而甲乙丙丁四角皆在半圜分之上又皆直角【三卷卅一】是为内切圜直角方形 第七题 有圜求作外切圜直角方形 法曰甲乙丙丁圜其心戊求作外切圜直角方形先作甲丙乙丁两径线以直角相交于戊次于甲乙丙丁作庚己己辛辛壬壬庚四线为两 径之垂线而相遇于己于辛于壬于庚即己庚壬辛为外切圜直角方形 论曰甲戊乙己乙戊既皆直角即己辛甲丙平行【一卷廿八】依显甲丙庚壬亦平行则己庚辛壬亦平行【一卷三十】又甲丙辛己既直角形即甲丙己辛必等【一卷卅四】而甲丙辛甲己辛两角亦等甲丙辛既直角即甲己辛亦直角依显庚壬辛亦直角而辛壬壬庚庚己三邉俱等于甲丙乙丁两径既四邉俱等于两径则己庚壬辛为直角方形而四邉各切圜【三卷十六之系】 第八题 直角方形求作形内切圜 法曰甲乙丙丁直角方形求作形内切圜先以四邉各两平分于戊于己于庚于辛而作 辛己戊庚两线交于壬其甲丁与乙丙既平行相等即半减线之甲辛乙己亦平行相等而甲乙与辛己亦平行相等【一卷卅三】依显丁丙与辛己亦平行相等甲丁乙丙戊庚俱平行相等而甲壬乙 壬丙壬丁壬四俱直角形壬戊壬己壬庚壬辛四线与甲辛戊乙丁辛甲戊四线各等夫甲辛戊乙丁辛甲戊各为等线之半即与之等者壬戊壬己壬庚壬辛亦自相等次作圜以壬为心戊为界必过己庚辛而切甲丁丁丙丙乙乙甲四邉【三卷十六】是为形内切圜第九题 直角方形求作形外切圜 法曰甲乙丙丁直角方形求作外切圜先作对角两线为甲丙乙丁而交于戊其甲乙丁 角形之甲乙甲丁两腰等即甲乙丁甲丁乙两角亦等【一卷五】而乙甲丁为直角即甲乙丁甲丁乙俱半直角【一卷卅二】依显丙乙丁丙丁乙亦俱半直角而四角俱等又戊甲丁戊丁甲两角等即戊甲戊丁两邉亦等【一卷六】依显戊甲戊乙两邉亦等而戊乙戊丙两邉戊丙戊丁两邉各等次作圜以戊为心甲为界必乙丙丁而为形外切圜 第十题 求作两邉等三角形而底上两角各倍大于腰间角法曰先任作甲乙线次分之于丙其分法须甲乙偕丙乙矩内直角形与甲丙上直角方形等【二卷十一】次以甲为心乙为界作乙 丁圜次作乙丁合圜线与甲丙等【本篇一】末作甲丁线相联其甲乙甲丁等即甲乙丁为两邉等角形而甲乙丁甲丁乙两角各倍大于甲角 论曰试作丙丁线而甲丙丁角形外作甲丙丁切圜【本篇五】其甲乙偕丙乙矩内直角形与甲丙上直角方形等即亦与至规外之乙丁上直角方形等而乙丁线切甲丙丁圜于丁【三卷卅七】即乙丁切线偕丁丙割线所作乙丁丙角与负丁甲丙圜分之甲角交互相等【三卷卅二】此二率者毎加一丙丁甲角即甲丁乙全角与丙甲丁丙丁甲两角并等夫乙丙丁外角亦与丙甲丁丙丁甲相对之两内角等【一卷卅二】即乙丙丁角与甲丁乙全角等而与相等之甲乙丁亦等丙丁与乙丁两线亦等【一卷六】夫乙丁元与甲丙等即丙丁与甲丙亦等丙甲丁丙丁甲两角亦等而甲角既与乙丁丙角等即乙丁丙与丙丁甲两角亦等是甲丁乙倍大于丙丁甲必倍大于相等之甲角也而相等之甲乙丁亦倍大于甲也 第十一题 有圜求作圜内五邉切形其形等邉等角 法曰甲乙丙丁戊圜求作五邉内切圜形等邉等角先作己庚辛两邉等角形而庚辛两角各倍大于己角【本篇十】次于圜内作甲丙丁角形与己庚辛角形各等角【本篇二】 次以甲丙丁甲丁丙两角各两平分【一卷九】作丙戊丁乙两线末作甲乙乙丙丙丁丁戊戊甲五线相联即甲乙丙丁戊为五邉内切圜形而五邉五角俱自相等 论曰甲丙丁甲丁丙两角皆倍大于丙甲丁角而两角又平分即甲丁乙乙丁丙丙甲丁丁丙戊戊丙甲五角皆等而五角所乘之甲乙乙丙丙丁丁戊戊甲五圜分亦等【三卷廿六】即甲乙乙丙丙丁丁戊戊甲五线亦等【三卷廿九】是五邉形之五邉等又甲乙戊丁两圜分等而各加一乙丙丁圜分即甲乙丙丁与戊丁丙乙两圜分等乘两圜分之甲戊丁乙甲戊两角亦等依显余三角与两角俱等是五邉形之五角等 第十二题 有圜求作圜外五邉切形其形等邉等角 法曰甲乙丙丁戊圜求作五邉外切圜形等邉等角先作圜内甲乙丙丁戊五邉等邉等角切形【本篇十一】次从己心作己甲己乙 己丙己丁己戊五线次从此五线作庚辛辛壬壬癸癸子子庚五埀线相遇于庚于辛于壬于癸于子【庚戊甲庚甲戊两角小于两直角故甲庚戊庚线必相遇余四仿此】五埀线既切圜【三卷十六】即成外切圜五邉形而等邉等角 论曰试从己心作己庚己辛己壬己癸己子五线其己甲甲辛上两直角方形己乙乙辛上两直角方形之两并各与己辛上直角方形等【一卷四七】即两并自相等此两并率者每减一相等之甲己己乙上直角方形即所存甲辛辛乙上两直角方形等则甲辛辛乙两线等也又甲己辛角形之甲己与乙己辛角形之乙己两腰等己辛同腰而甲辛辛乙两底又等即甲己辛辛己乙两角等【一卷八】而甲辛己乙辛己两角亦等【一卷四】则甲己乙角倍大于辛己乙角也依显乙己丙角 ✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜未完待续>>>完整版请登录大玄妙门网✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜