[book_name]物理学和哲学 [book_author]海森堡 [book_date]不详 [book_copyright]玄之又玄 謂之大玄=學海無涯君是岸=書山絕頂吾为峰=大玄古籍書店獨家出版 [book_type]外国名著,完结 [book_length]150551 [book_dec]德国海森堡著。海森堡早年随A.J.W.索末菲(Sommerfeld)学习理论物理学,1923年在慕尼黑大学获哲学博士学位,后曾分别在M.玻恩(Born)和N.玻尔(Bohr)的指导下工作过,是继玻尔之后哥本哈根学派的主要代表人物,曾获得1932年度的诺贝尔物理学奖,为理论物理学和原子物理学的发展奋斗了终身。作为量子力学的创始人之一,他不仅创建和发展了矩阵力学,提出了刻划微观世界的著名的测不准原理,而且晚年还致力于基本粒子统一场论的研究工作。本书是他以1955至1956年冬季在圣安德鲁兹大学的吉福特讲座上的讲稿为基础,经整理于1959年出版,是他结合当代原子物理学的研究对哲学问题所作的探讨。全书凡11章,从考察量子理论建立的历史着手,较系统地阐述了哥本哈根学派的基本哲学观点,内容涉及当代物理学理论及其哲学意义、哲学史、语言学、逻辑以及物理学的社会作用等一系列问题,深刻地反映了既是物理学家也是哲学家的“这一个”是作者最为系统的一本哲学著作。 [book_img]Z_10314.jpg [book_title]简介 韦纳尔·卡尔·海森伯(Werner Karl Heisenberg,1901-1976)是当代最卓越的理论物理学家和原子物理学家之一。1976年,物理学家维格纳在悼念海森伯的文章中说:“没有一个活着的理论物理学家在这个领域内比他贡献更大。”海森伯是量子力学的创始人之一。他为原子、原子核、基本粒子物理学的发展奋斗了终生。他是继玻尔之后的哥本哈根学派的主要代表人物。 海森伯平1901年12月5日生于德国维尔茨堡。原子物理学也正是在这前后诞生和开始发展起来的。1911年他到慕尼黑上中学。1919年他首次接触到原子概念。1920年他进入慕尼黑大学随原子物理学家索末菲等学习物理学。卓越的物理学家泡利是他的同学和挚友。 【作 者】(德)W.海森伯(Werner Karl Heisenberg)著 范岱年译 【丛书名】汉译世界学术名著丛书 【形态项】 224 ; 20cm 【读秀号】000000018880 【出版项】 商务印书馆 , 1981 【ISBN号】 7-100-02763-2 / O4-02 【原书定价】 ¥11.40 网上购买 【主题词】物理学哲学 【参考文献格式】(德)W.海森伯(Werner Karl Heisenberg)著 范岱年译. 物理学和哲学 现代科学中的革命. 商务印书馆, 1981. [book_title]第一章 老传统和新传统 今天,当人们谈到现代物理学时,首先就想到原子武器。人人都认识到这些武器对现代世界政治结构的巨大影响,并且都心悦诚服地承认物理学对一般政治形势的影响比以往任何时期都要大。但是,现代物理学的政治方面真的是它的最重要的方面吗? 当世界上的政治结构已变得适应于新技术的种种可能性时,现代物理学还将留下什么影响呢? 为了回答这些问题,应当记住,每个工具都带有用来创造它的那种精神。因为每个国家和每个政治集团,不管它的地理位置和文化传统如何,都必须以某种方式关心这种新武器,所以,现代物理学的精神必将渗透到许多人的心灵之中,并以各种不同的方式和老传统联系起来。现代科学的这个特殊部门对各种强有力的老传统进行冲击的结果将是什么呢?世界上已经发展了现代科学的那些地区,长时期来,主要兴趣是在实用的活动方面,在工业和与这种活动的内外条件的合理分析相结合的工程学方面。这些地区的人觉得应付这些新观念是颇为容易的,因为他们已经有充分时间慢慢地、逐渐地来适应现代科学的思想方法。在世界的其他地区,这些观念将同本地文化的宗教基础和哲学基础发生冲突。因为现代物理学的成果确实触及实在、空间和时间这样一些基本概念,所以,这种冲突可能引起全新的、难以预料的发展。在现代科学和旧思想方法之间这次决战的特征之一,就在于它完全是国际性的。在这次思想交流中,老传统的一方在世界不同地区是不同的,而它的对方则在任何地区都是一样的,因此,这次思想交流的结果将传播到发生论战的全部地区。 由于这样的理由,尝试用不太技术性的语言来讨论现代物理学的这些观念,研究它们的哲学影响,将它们和若干较老的传统相比较,可能不是一个无关紧要的任务吧。 对量子论的发展作一历史性描述,可能是着手讨论现代物理学问题的最好的方法。确实,量子论仅仅是原子物理学中的一个小分支,而原子物理学又是现代科学中的一个很小的分支。然而,正是在量子论中,关于实在的概念发生了最基本的变化,并且也是在量子论中,原子物理学的新观念集合并具体化为它的最后的形式。原子核物理学研究所需的巨大的、非常复杂的实验设备,显示了这一现代科学部门的另一非常激动人心的方面。说到实验技术,原子核物理学代表了自从惠更斯(Huyghens)、伏打(Volta)或法拉第(Faraday)以来一直决定着现代科学成长的研究方法的最大扩展。与此相似,量子论某些部分的令人望而生畏的数学复杂性,也可以说是代表着牛顿(Newton)、高斯(Gauss)或麦克斯韦(Maxwell)的方法的最高成就。但是,在量子论中显示的实在概念的变化,并不是过去的简单的继续,而却象是现代科学结构的真正破裂。因此,下一章首先将致力于探讨量子论的历史发展。 [book_title]第二章 量子论的历史 量子论的起源是和一个大家熟悉的现象相联系的,这一现象并不属于原子物理学的中心部分。任何一块物质在被加热时,都会开始发光,并在较高温度下达到红热和白热。发光的颜色与材料表面关系不大,而对于黑体,则只与温度有关。因此,这样一个黑体在高温下发出的辐射是物理学研究的适当对象;它是一个简单的现象,并且应该可以根据已知的辐射和热学定律找到一个简单的解释。但是,瑞利勋爵(Lord Rayleigh)和琼斯(Jeans)在十九世纪末所作的努力却失败了,并且揭示了种种严重的困难。这里无法以简单的词句描述这些困难。但只要指出他们应用已知定律不能导出合理的结果这一点,应该也就够了。当普朗克(Planck)在1895年进入这条研究路线时,他试图将问题从辐射转到辐射原子方面。这种转换不能消除问题中固有的任何困难,它只简化了经验事实的解释。正当这个时候,即在1900年的夏天,库尔包姆(Curlbaum)和鲁本斯(Rubens)在柏林对热辐射光谱作了很准确的新测量。当普朗克听到这些结果时,他试图根据他对热与辐射的一般联系的研究,用简单的、看来好象是合理的数学公式来表示它们。有一天,普朗克和鲁本斯在普朗克家中喝茶,他们将鲁本斯的最新结果和普朗克提出的新公式作比较。比较的结果表明二者完全相符。这就是普朗克热辐射定律的发现。 就在这个时候,普朗克开始了艰巨的理论工作。什么是新公式的正确物理解释呢,既然普朗克能根据他以往的工作把他的公式毫不费力地翻译成关干辐射原子(所谓振子)的陈述,那么他一定很快就发现了,他的公式似乎表明振子只能包含分立的能量子——这个结果与经典物理学中任何已知的东西是那么不同,似致他在开始的时候一定会觉得难以相信。但是,在1900年夏天最紧张的工作时期中,他终于确信无法避免这个结论.普朗克的儿子曾说,他的父亲曾在通过柏林近郊的森林——绿林的漫长的散步中谈到了他的新观念。在这次散步中,他解释说,他感到他可能已经完成了一个第一流的发现,或许只有牛顿的发现才能和它相比。所以,这个时候曾朗克一定认识到了,他的公式已经触动我们描述自然的基础,并且有朝一日,这些基础将从它们现有的传统位置向一个新的、现在还不知道的稳定位置转移。普朗克由于在整个世界观上是保守的,他根本不喜欢这个后果,但他还是在1900年12月发表了他的量子假说。 能量只能以分立的能量子发射或吸收,这个观念是这样新奇,以致它不能适合物理学的传统框架。普朗克企图把他的新假说和老的辐射定律调和起来的尝试,在几个根本点上都失败了。这一尝试花了五年时间,直到能够朝新方向迈出第二步时为止。 这时候出现了年轻的阿耳伯特·爱因斯坦(Albert Einstein),物理学家中的一个有革命性的天才,他不怕进一步背离旧的观念。他在两个问题中应用了新观念。一个就是所谓光电效应,即金属在光的作用下发射出电子。许多实验——特别是勒纳(Lenard)的那些实验——都表明,发射电子的能量与光的强度无关,而只与光的颜色有关,更准确地说,即只与光的频率有关。根据传统的辐射理论,这是难以理解的。爱因斯坦将普朗克的假说解释为光是由穿过空间的能量子组成的,这样,他就成功地解释了上述的观测结果。按照普朗克的假说,一个光量子的能量应当等于光的频率乘以普朗克常数。 另一个问题是固体的比热。从传统理论推导出来的比热值与高温时的观测记录相符,但在低温肘就不相符了。又是爱因斯坦成功地指出,将量子假说应用到固体中原子的弹性振动上去,就可以理解这种性状。这两个结果标志了一个很重要的进展,因为它们表明,普朗克的作用量子(在物理学家中称为普朗克常数)也出现在若干与热辐射并无直接关系的现象中。同时,它们还揭示了新假说的深刻的革命性,因为第一个问题导出了与光的传统的波动图象边然不同的描述。光既可以按照麦克斯韦的理论解释为由电磁波所组成,又可以解释为由光量子,即由以高速穿过空间的能包所组成。但是,是否两种解释都成立呢?爱因斯坦当然知道,著名的衍射和干涉现象只有根据波动图象才能解释。他不能消除这个波动图象和光量子观念之间的根本矛盾;他甚至也不企图消除这种解释的不一致性。他只是简单地把这种矛盾看作是某种大概只有在很久以后才能弄清楚的东西。 在这期间,贝克勒耳(Becquerel)、居里(Curie)和卢瑟福(Rutherford)的实验,对原子结构的问题作了某种程度的澄清。1911年,卢瑟福认他对穿过物质的alpha射线与物质的相互作用的观测,推导出他的著名的原子模型。原子被描绘为由一个原子核和一些电子所组成,原子核带正电,差不多包含了原子的全部质量,而电子环绕原子核旋转,就象行星环绕太阳旋转一样。不同元素的原子之间的化学键被解释为相邻原子的外层电子之间的相互作用;它和原子核没有直接关系。原子核通过它的电行决定着原子的化学行为,而原子核的电荷又使中性原子的电子数目固定不变。起初,这个原子模型不能解释原子的最突出的特性,即原子的巨大稳定性。按照牛顿的力学定律,从来没有一个行星系统在它和另一个这样的系统碰撞以后能够回复它原来的位形。但是,举例说吧,一个碳元素的原子,在化学结合过程中的任何一次碰撞和相互作用之后,都始终保持为一个碳原子。 玻尔(Bohr)在1913年利用普朗克的量子假说,对这个不平常的稳定性作出了解释。如果原子只能通过分立的能量子来改变它的能量,这必定意味着原子只能处在分立的定态之中,而最低的定态就是原子的正常态。因此,原子在各种相互作用以后,最后总是回复到它的正常态。 通过量子论在原子模型上的这种应用,玻尔不仅能够解释原子的稳定性,而且,在若干简单例子中,对原子通过放电或加热受激发后所发射的光谱线也能作出理论解释。他的理论以电子运动的经典力学和量子条件的结合为基础,这些量子条件是为了定义系统的分立定态而强加于经典运动之上的。关于这些条件的一致的数学表述是后来由索末菲(Sommerfeld)给出的。玻尔完全了解量子条件在某些方面破坏了牛顿力学的一致性这样一个事实。在氢原子的简单例子中,人们能根据玻尔的理论算出原子所发射的光的频率,并且和观察结果完全一致。然而这些频率和电子环绕原子核的轨道频率以及它们的谐频都不相同,这个事实立刻显示了玻尔的理论还充满了矛盾。但是,它包含了真理的主要部分。它定性地解释了原子的化学行为和它们的光谱线。分立定态的存在也为弗朗克(Franck)和赫兹(Hertz)、斯特恩(Stern)和革拉赫(Gerlach)的实验所证实。 玻尔的理论开辟了一条新的研究路线。光谱学在好几十年内积累起来的大量实验资料,现在可用来作为关于支配原子中电子运动的奇怪的量子定律的信息了。许多化学实验能用于同样的目的。从这个时候开始,在这方面物理学家才学会提出正确的问题;而提出正确的问题往往等于解决了问题的大半。 这些问题是什么,实际上全部问题都涉及不同实验结果之间的奇怪的明显的矛盾。同一种辐射,它既产生干涉图样,因而它必定是由波所组成,然而它又引起光电效应,因而它必定由运动的粒子所组成,这是怎么一回事呢,原子中电子的轨道运动的频率怎么能够不在发射出的辐射的频率中显示出来,难道这意味着没有轨道运动,但是假如轨道运动的观念是不正确的,那么原子中的电子到底是怎么样的呢?人们能够看到电子通过一个云空,有时它们是从一个原子中打出来的;为什么它们不再运动到原子之中去呢,确实,在原子的正常态即最低能态中,电子或许可能是静止的。但是还有许多较高的能态,在这些态里电子壳展有一个角动量。那里的电子不可能是静止的。人们还能够举出许多类似的例子。人们一而再、再而三地发现,用物理学的传统术语来描述原子事件的企图,结果总是导致矛盾。 到二十年代的初期,物理学家们逐渐变得习惯于这些困难了,他们得到了关于麻烦会在哪里发生的某种模糊的知识,并且还学会了回避矛盾。他们知道,对于所探讨的特殊实验,关于原子事件的哪一种描述是正确的。这虽然还不足以为一个星子过程中所发生的一切构成一幅前后一致的一般国象,但它是这样地改变了物理学家们的见解,以致他们多少领会了量子论的精神。因此,甚至在人们建立起前后一致的量子论形式系统以前的相当时期,人们就已多少知道~些实验的结果将是个什么样子。 人们常常讨论到那种所谓理想实验。这样的实验是被设计来回答判决性的问题的,不管它们实际上是否能够实现。当然,重要的是原则上应当能够实现这个实验,但在技术上可能是极端复杂的。这些理想实验在澄清某些问题方面是十分有用的。如果物理学家们对某个理想实验的结果没有~致的意见,那就常常可以找到一个与之相似但更为简单的能够实现的实验,从而使实验答案能从基本上对量子论的阐明有所贡献。 那几年有一个最奇怪的经验:在阐明过程中,量子论的佯谬并没有消失;恰恰相反,它们甚至变得更为显著,更加激动人心了。例如,康普顿(Compton)有一个关于X射线散射的实验就是这样。在以往关于散射光干涉的实验中,散射无疑地主要以下列方式发生:入射光波使得处于光束中的一个电子以光波的频率振动;然后振荡的电子发出一个同样频率的球面波,从而产生了散射光。然而康普顿在1923年发现,散射出来的X射线的频率与人射X射线的频率不同。假设散射是用光量子和一个电子的碰撞来描述的,那么,频率的这种改变在形式上是可以理解的。光量子的能量在碰值过程中改变了;并且因为频率乘上普朗克常数应当是光量子的能量,所以频率也应当改变。但是在光波伪这种解释中发生了什么呢,两个实验——一个是关于散射光的干涉,另一个是关于散射光频率的变化——看来是互相矛盾,没有任何调和的可能性的。 这时候,许多物理学家相信,这些明显的矛盾应当归入原子物理学的内在的结构。因此, 1924年,法国的德布罗意(deBroglie)试图将光的波动描述方法和粒子描述方法间的二象性推广到物质的基本粒子,首先是推广到电子上去。他指出,有某种物质波云“对应”于一个运动电子,就象一个光波对应于一个运动光量子一样。那时候,在这种联系中“对应”这个词意味着什么,还是不清楚的。但是德布罗意建议,应当把玻尔理论中的量子条件解释为关于物质波的陈述。由于几何学上的理由,环绕一个核转动的波只能是一个驻波;而轨道的周长必定是波长的整数倍。德布罗意的观念就是这样地把量子条件和波粒二象性联系起来,而量子条件过去在电子力学中一直是一个外来的因素。 在玻尔的理论中,计算出来的电子轨道频率和发射出来的辐射频率间的不相符.必须解释成电子轨道的概念有其局限性。这个概念从一开始就有点值得怀疑。然而,对于较高的轨道,电子将在离核很远的地方运动,就象人们看到它们在云室中运动时的情况一样。在那里,人们应当谈到电子轨道。因此,对于这些较高的轨道,发射辐射频率接近轨道频率和它的较高的谐频,这是很令人满意的。此外,玻尔在他的早期论文中就已经提出,发射光谱线的强度接近干对应的谐波的强度。这个对应原理对近似地计算谱线强度已经证明是很有用的。这样,人们就有一个印象:玻尔的理论对原子内部发生的事情作了定性的但不是定量的描述;物质行为的若干新特征是由量子条件定性地表示的,而这些量子条件又与波粒二象性相联系。 量子论的准确的数学表述最后是从两个不同的发展方向出现的。一个从玻尔的对应原理开始。人们不得不放弃电子轨道的概念,但在高量子数的极限情况下,即对于大轨道而言,这个概念仍须保留。在后面这种情形中,发射辐射以它的频率和强度给出电子轨道的图象;这个图象代表数学家所谓的轨道的傅里叶(Fourier)展开式。这种观念自身说明了,人们不应当把力学定律写为电子的位置和速度的方程,而应当写为电子的傅里叶展开式中的频率和振幅的方程。从这样一些方程出发并稍稍改变它们,人们就能够希望得到同发射辐射频率和强度相对应的那些量之间的关系,这些关系甚至对干小轨道和原子的基态也能成立。这个计划是能够实际实现的;1925年的夏天,它引导出一个数学形式系统,称为矩阵力学,或者,更一般地称为量子力学。牛顿力学的运动方程被矩阵之间的类似方程所代替Z有一个新奇的经验是:人们发现牛顿力学的许多旧结果,例如能量守恒等等,也能从新的数学方案推导出来。后来,玻思(Born)、约尔丹(Jordan)和狄拉克(Dirac)的研究表明,代表电子的位置和动量的矩阵是不对易的。这个事实清楚地显示了经典力学和量子力学之间的本质差别。 另一个发展方向是随着德布罗意的物质波的观念而来的。薛定谔(Schrodinser)试图建立一个关于环绕原子核的德布罗意驻波的波动方程。早在1926年,他成功地推导出氢原子各定态的能量值作为他的波动方程的“本征值”,并能给出将一套已定的经典运动方程转换成多维空间中对应的波动方程的更一般的规定。后来,他又得以证明,他建立的波动力学形式系统和较早的量子力学形式系统在数学上是等价的。 因此,人们终于有了一个前后一致的数学形式系统,它能用两种等价的方法规定下来,或者从矩阵之间的关系出发,或者从波动方程出发。这个形式系统绘出了正确的氢原子能量值;不到一年,又征明它对氦原子和较重原子的更复杂问题也是成功的。但是新的形式系统是在什么样的意义上描述原子的呢?波动图象与微粒图象间二象性的佯谬尚未解决;这些佯谬不知因什么缘故而潜伏在数学方案之中。 玻尔、克拉麦斯(Kramers)、斯莱特(Slate)在1924年向真正理解量子论迈出了第一步和很有意义的一步。这几位作者试图用几率波的概念来解决波动图象和粒子图象间的明显矛盾。电磁波不被解释为“真实”的波,而被解释为几率波,几率波在每一点的强度决定该点的原子吸收(或感生发射〕一个光量子的几率。这个观念引导出这样一个结论:能量和动量守恒律对单个粒子事件不一定成立,它们只是统计规律,只有取统计平均值时才成立。不过,这个结论是不正确的,而辐射的波动面貌和粒子面貌之间的联系却变得更为复杂了。 但是玻尔、克拉麦斯和斯莱特的论文揭示了量子论的正确解释的一个主要特征。几率波的概念是牛顿以来理论物理学中全新的东西。在数学或统计力学中,几率意味着我们对实际状况认识程度的陈述。在掷骰子时,我们不知道决定骰子下落的人手运动的细节,因此我们说掷出某一个特定数字的几年正好是六分之一。然而,玻尔、克拉麦斯、斯莱特的几率波意味着更多一些东西;它意味着对某些事情的倾向。它是亚里土多植(Aristotle)哲学中“潜能”(potentia)这个老概念的定量表述。它引入了某种介于实际的事件和事件的观念之间的东西,这是正好介于可能性和实在性之间的一种新奇的物理实在。 后来,当量子论的教学框架确定了以后,玻恩来取了这个几率波的观念,并给被看作几年波的形式系统中的数学量以清楚的定义。它不是象弹性波或无线电波那样的三维波,而是在多维位形空间中的波,因而是颇为抽象的数学量。 即令在这个时候,即在1926年夏天,在各种情况下应当怎样使用数学形式系统来描述给定的实验状况,也还是没有搞清楚。人们知道怎样描写一个原子的定态,但不知道怎样描述一个简单得多的事件——例如通过云室的一个电子。 当薛定谔在那个夏天证明了他的波动力学形式系统在教学上等价于量子力学以后,他一度试图全部放弃量子和“量子跳变”的观念,并简单地用他的三维物质波来代替原子中的电子。他当时热衷于这种尝试是由于他得到了一个成果,即在他的理论中氢原子的能级似乎正好就是驻立物质波的本征频率。因此,他以为把它们叫做能量是错误的;它们只不过是频率。但在玻尔、薛定谔和哥本哈根学派的物理学家们于1926年秋在哥本哈根举行的讨论会中,很快就弄清楚,这样一种解释甚至还不足以解释普朗克的热辐射公式。 在这些讨论以后的几个月内,在哥本哈根对有关解释量子论的全部问题所作的紧张研究,正如许多物理学家所相信的那样,终于对情况作出了全面的、令人满意的阐明。但这不是一个容易被人接受的解答。我记得有一次同玻尔讨论了几个钟头,直到深夜才几乎在绝望中结束;当讨论结束时,我独自到邻近的花园中去散步,当时我一再反复问我自己:难道自然界真能象这些原子实验给我们的印象那么荒诞无稽吗, 最后的解答是从两条不同的道路逐渐接近的。一条是改变问题的提法。代替这样一个问题:“人们怎样才能够在已知的数学方案中表示出一个给定的实验状况?”提出了另一个问题:“只有能在数学形式系统中表示出来的实验状况才能在自然中发生,也许这是正确的?” 如果假设这实际上是正确的,结果就将对自牛顿以来成为经典力学基础的那些概念的适用范围施加限制。像在牛顿力学中那样,人们能够谈论一个电子的位置和速度,并能够观察和测量这些量。但是,人们不能以任意高的准确度同时测定这两个量。实际上已经发现,这样两个不准确度的乘积不应当小于普朗克常数除以粒子的质量。从其他实验状况也能推出类似的关系。它们通常称为测不难关系,或测不准原理。人们已经知道,老概念只是不准确地吻合自然。 另一条接近的道路是玻尔的互补概念。薛定谔已经不把原子描述为一个原子核和电子的系统,而把它描述为一个原子核和一些物质波的系统。这种物质彼图象当然也包含一个真理的因素。玻尔把两种图象——粒子国象和波动图象——看作是同一个实在的两个互补的描述。这两个描述中的任何一个都只能是部分正确的,使用粒子概念以及波动概念都必须有所限制,否则就不能避免矛盾。如果考虑到能够以测不准关系表示的那些限制,矛盾就消失了。 这样,自从1927年春天以来,人们就有了一个量子论的前后一致的解释,它常常被称为“哥本哈根解释”。1927年在布鲁塞尔举行的索尔维(Solvay)会议上,这个解释接受了严峻的考验。对那些总是导致最坏的佯谬的实验全都再三地在所有细节上作了讨论,特别是爱因斯坦。人们还设想了一些新的理想实验去探索理论的任何可能的不一致性,但是这个理论被证明为前后一致的,并且对于人们所知道的一切实验,看来都是符合的。 这个哥本哈根解释的细节将是下一章的主题。应当强调指出这一点:从最初提出存在能量子的观念到真正理解鼻子理论的定律,已经过去了四分之一世纪以上。这表明了,在人们能够理解新情况之前,有关实在的基本概念必须发生巨大的变革。 [book_title]第三章 量子论的哥本哈根解释 量子论的哥本哈根解释是从一个佯谬出发的。物理学中的任何实验,不管它是关于日常生活现象的,或是有关原子事件的,都是用经典物理学的术语来描述的。经典物理学的概念构成了我们描述实验装置和陈述实验结果的语言。我们不能也不应当用任何其他东西来代替这些概念。然而,这些概念的应用受到测不准关系的限制。当使用这些概念时,我们必须在心中牢记经典概念的这个有限的适用范围,但我们不能够也不应当企图去改进这些概念。 为了更好地了解这个佯谬,比较一下在经典物理学和量子论中对一个实验进行理论解释的程序是有用的。譬如,在牛顿力学中,我们要研究行星的运动,可以从测量它的位置和速度开始。只要通过观测推算出行星的一系列坐标值和动量值,就可以将观测结果翻译成数学。此后,运动方程就用来从已定时间的这些坐标和动量值推导出晚些时候系统的坐标值或任何其他性质,这样,天文学家就能够预言系统在晚些时候的性质。例如,他能够预言月蚀的准确时间。 在量子论中,程序稍有不同。例如,我们可能对云室中一个电子的运动感兴趣,并且能用某种观测决定电子的初始位置和速度。但是这个测定将不是准确的;它至少包含由于测不准关系而引起的不准确度,或许还会由于实验的困难包含更大的误差。首先正是由于这些不准确度,才容许我们将观测结果翻译成量子论的教学方案。写出的几率函数是代表进行测量时的实验状况的,其中甚至包含了测量的可能误差。 这种几率函数代表两种东西的混合物,一部分是事实,而另一部分是我们对事实的知识。就它选定初始时间的初始状说的几率为1(即完全确定)这一点说,它代表了事实:电子在被观测到的位置以被观测到的速度运动;“被观测到”意指在实验的准确度范围内被观测到。而就另一个观测者或许能够更准确地知道电子的位置这一点说,它则代表我们的知识。实验的误差并不(至少在某种程度上)代表电子的性质,而表示了我们对电子的知识的缺陷。这种知识的缺陷也是由几率函数表示的。 在经典物理学中,当在进行精细的研究时,人们同样应当考虑到观测的误差。结果,人们就得到关于坐标和速度的初始值的几率分布,因此也就得到很类似于量子力学中的几率函数的某种东西。只是量子力学中由于测不准关系而必有的测不准性,在经典物理学中是没有的。 当量子论中的几率函数已在初始时间通过观测决定了以后,人们就能够从量子论定律计算出以后任何时间的几率函数,并能由此决定一次测量给出受测量的某一特殊值的几率。例如,我们能预测以后某一时间在云室中某一给定点发现电子的几率。应当强调指出,无论如何,几率函数本身并不代表事件在时间过程中的经过。它只代表一些事件的倾向和我们对这些事件的知识。只有当满足一个主要条件时:例如作了决定系统的某种性质的新测量时,几率函数才能和实在联系起来。只有那时,几率函数才容许我们计算新测量的可能结果。而测量结果还是用经典物理学的术语叙述的。 由此可见,对一个实验进行理论解释需要有三个明显的步骤:(1)将初始实验状况转达成一个几率函数;(2)在时间过程中追踪这个几率函数;(3)关于对系统所作新测量的陈述,测量结果可以从几率函数推算出来。对于第一个步骤,满足测不难关系是一个必要的条件。第二步骤不能用经典概念的术语描述:这里没有关于初始观测和第二次测量之间系统所发生的事情的描述。只有到第三个步骤,我们才又从“可能”转变到“现实”。 让我们用了个简单的理想实验来演示这样三个步骤。前面已经说过,原子是由一个原子核和环绕原子核运动的电子所组成;前面也已论述过,电子轨道的概念是可疑的。人们或许会主张,至少原则上应当能够观察到轨道中的电子。人们可以简单地通过一个分辨本领非常高的显微镜来观看原子,这样就应该能看到在轨道中运动的电子。当然,使用普通光的显微镜是不能达到这样高的分辨本领的,因为位置测量的不准确度决不能小于光的波长。但是一个用波长小于原子大小的γ射线的显微镜将能做到这一点。这样的显微镜尚未被制造出来,但这不应当妨碍我们讨论这个理想实验。 第一个步骤,即将观测结果转达成一个几率函数,是可能做到的吗,只有在观测后满足测不准关系时,这才是可能的。电子的位置可以观测得这样准确,其准确度随γ射线的波长而定。在观测前电子可以说实际上是静止的。但是在观测作用过程中,至少有一个γ射线的光量子必须通过显微镜,并且必须首先被电子所偏转。因此,电子也被光量子所撞击,这就改变了它的动量和速度。人们能够证明,这种变化的测不准性正好大到足以保证测不准关系的成立。因此,关于第一个步骤,没有丝毫困难。 同时,人们能够很容易理解没有观测电子环绕原子核的轨道的方法。第二个步骤在于显示一个不绕原子核运动而是离开原子的波包,因为第一个光量子已将电子从原子中打出。如果γ射线的波长远小于原子的大小,γ射线的光量子的动量将远大于电子的原始动量。因此,第一个光量子足以从原子中打出电子,并且人们决不能观测到电子轨道中另外的点;因此,也就没有通常意义的轨道了。下一次观测——第三个步骤——将显示电子离开原子的路线。两次相继观测之间所发生的事情,一般是完全无法描述的。当然,人们总想这样说:在两次观测之间,电子必定要处在某些地方,因而必定也描绘出某种路线或轨道,即使不可能知道是怎样一条路线。这在经典物理学中是一个合理的推论。但是,在量子论中,我们将在后面看出,这是语言的不合理的误用。我们可以暂时不去管这个警告究竟是指我们谈论原子事件的方法还是指原子事件本身,究竟它所涉及的是认识论还是本体论。但在任何情况下,我们对原子粒子的行为作任何陈述时,措辞都必须非常小心。 实际上我们完全不需要说什么粒子。对于许多实验,说物质波却更为便利;譬如,说环绕原子核的驻立物质波就更为便利。但是,如果不注意测不准关系所给出的限制,这样一种描述将和另一种描述直接矛盾。通过这些限制,矛盾就避免了。使用“物质波”是便利的,举例说,处理原子发射的辐射时就是这样。辐射以它的频率和强度提供了原子中振荡着的电荷分布的信息,因而波动图象比粒子图象更接近于真理。因此,玻尔提倡两种图象一并利用,他称它们是“互补”的。这两种图象当然是相互排斥的,因为一个东西不能同时是一个粒子(即限制平很小体积内的实体〕而又是一个波(即扩展到一个大空间的场),但二者却互相补充。摆弄这两种图象,从一种图象转到另一种图象,然后又从另一种图象转回到原来的图象,我们最终得到了隐藏在我们的原子实验后面的奇怪的实在的正确印象。玻尔在量子论解释的好几个地方使用了“互补性”概念。关于粒子位置的知识是和关于它的速度或动量的知识互补的。如果我们以高度的准确性知道了其中一个,我们就不能以高度的准确性知道另一个;但为了决定系统的行为,我们仍须两个都知道。原子事件的空间时间描述是和它们的决定论描述互补的。几率函数服从一个运动方程,就象坐标在牛顿力学中那样;它随时间的变化是被量子力学方程完全决定了的,但它不容许对原子事件在空间和时间中进行描述。另一方面,观测要求在空间和时间中对系统进行描述,但是,由于观测改变了我们对系统的知识,它也就破坏了几率函数的已定的连续性。 一般地讲,关于同一实在的两种不同描述之间的二象性已不再是一个困难了,因为我们已经从量子论的数学形式系统得知,矛盾是不能产生的。两种互补图象—一波和粒子——间的二象性也很清楚地表现在数学方案的灵活性中。数学形式系统通常是仿照牛顿力学中关于粒子的坐标和动量的运动方程写出的。但通过简单的变换,就能把它改写成类似于关于普通三维物质波的波动方程。因此,摆弄不同的互补国象的这种可能性类似于数学方案的不同变换;它并不给量子论的哥本哈根解释带来任何困难。 然而,当人们提出了这样一个著名的问题:“但是在原子事件中‘真正’发生了什么呢?”这时,了解这种解释的真正困难就产生了。前面说过,一次观测的机构和结果总是能用经典概念的术语来陈述的。但是,人们从一次观测推导出来的是一个几率函数,它是把关于可能性(或倾向)的陈述和关于我们对事实的知识的陈述结合起来的一种数学表示式。所以我们不能够将一次观测结果完全客观化,我们不能描述这一次和下一次观测间“发生”的事情。这看来就象我们已把一个主观论因素引入了这个理论,就象我们想说:所发生的事情依赖于我们观测它的方法,或者依赖于我们观测它这个事实。在讨论这个主观论的问题之前,必须完全解释清楚,为什么当一个人试图描述两次相继进行的观测之间所发生的事情时,他会陷入毫无希望的困难。 为此目的,讨论下述理想实验是有好处的,我们仅沿一个小单色光源向一个带有两个小孔的黑屏辐射。孔的直径不可以比光的波长大得太多,但它们之间的距离远远大于光的波长。在屏后某个距离有一张照像底片记录了人射光。如果人们用波动图象描述这个实验,人们就会说,初始波穿过两个孔;将有次级球面波从小孔出发并互相干涉,而干涉将在照像底片上产生一个强度有变化的图样。 照像底片的变黑是一个量子过程,化学反应是由单个光量子所引起的。因此,用光量子来描述实验必定也是可能的。如果容许讨论单个光量子在它从光源发射和被照像底片吸收之间所发生的事情的话,人们就可以作出如下的推论:单个光量子能够通过第一个小孔或通过第二个小孔。如果它通过第一个小孔并在那里被散射,它在照像底片某点上被吸收的几率就不依赖于第二个孔是关着或开着。底片上的几率分布就应当同只有第一个孔开着的情况一样。如果实验重复多次,把光量子穿过第一个小孔的全部情况集中起来,底片由于这些情况而变黑的部分将对应于这个几率分布。如果只考虑通过第二个小孔的那些光量子,变黑部分将对应于从只有第二个小孔是开着的假设推导出来的几率函数。因此,整个变黑部分将正好是两种情况下变黑部分的总和;换句话说,不应该有干涉图样。但是我们知道,这是不正确的,因为这个实验必定会出现干涉图样。由此可见,说任一光量子如不通过第一个小孔就必定通过第二个小孔,这种说法是有问题的,并且会导致矛盾。这个例子清楚地表明,几率函数的概念不容许描述两次观测之间所发生的事情。任何寻求这样一种描述的企图都将导致矛盾;这必定意味着“发生”一词仅限于观测。 这确是一个非常奇怪的结果,因为它们似乎表明,观测在事件中起着决定性作用,并且实在因为我们是否观测它而有所不同。为了更清楚地表明这一点,我们必须更仔细地分析观测过程。 首先,记住这一点是重要的:在自然科学中,我们并不对包括我们自己在内的整个宇宙感到兴趣,我们只注意宇宙的某一部分,并将它作为我们研究的对象。在原子物理学中,这一部分通常是一个很小的对象,一个原子粒子或是一群这样的粒子,有时也可能要大得多——大小是不关紧要的;但是,重要的是,包括我们在内的大部分宇宙并不属于这个对象。 现在,从已经讨论过的两个步骤开始对实验作理论的解释。第一步,我们必须用经典物理学的术语来描述最后要和第一次观测相结合的实验装置,并将这种描述转译成几率函数。这个几率函数服从量子论的定律,并且它在连续的时间过程中的变化能从初始条件计算出来;这是第二步。几率函数结合了客观与主观的因素。它包含了关于可能性或较大的倾向(亚里土多德哲学中的“潜能”)的陈述,而这些陈述是完全客观的,它们并不依赖于任何观测者;同时,它也包含了关于我们对系统的知识的陈述;这当然是主观的,因为它们对不同的观测者就可能有所不同。在理想的情形中,几率函数中的主观因素当与客观因素相比较时,实际上可以被忽略掉。这时,物理学家就称它为“纯粹情态”。 现在,当我们作第二次观测时,它的结果应当从理论预言出来;认识到这一点是十分重要的,即我们的研究对象在观测前或至少在观测的一瞬间必须和世界的另一部份相接触,这世界的另一部份就是实验装置、量尺等等。这表示几率函数的运动方程现在包含了与测量仪器的相互作用的影响。这种影响引入一种新的测不准的因素,因为测量仪器是必须用经典物理学的术语描述的;这样一种描述包含了有关仪器的微观结构的测不准性,这是我们从热力学认识到的;然而,因为仪器又和世界的其余部份相联系,它事实上还包含了整个世界的微观结构的测不准性。从这些测不准性仅仅是用经典物理学术语描述的后果而并不依赖于任何观察者这一点说,它们可以称为客观的。而从这些测不准性涉及我们对于世界的不完全的知识这一点说,它们又可以称为主观的。 在发生了这种相互作用之后,几率函数包含了倾向这一客观因素和知识的不完整性这一主观因素,即令它以前曾经是一个“纯粹情态”,也还是如此。正是由于这个原因,观测结果一般不能准确地预料到Z能够预料的只是得到某种观察结果的几率,而关于这种几率的陈述能够以重复多次的实验来加以验证。几率函数不描述一个确定事件(即不象牛顿力学中那种正常的处理方法),而是种种可能事件的整个系综,至少在观测的过程中是如此。 观测本身不连续地改变了几率国数Z它从所有可能的事件中选出了实际发生的事件。因为通过观测,我们对系统的知识已经不连续地改变了,它的数学表示也经受了不连续的变化,我们称这为“量子跳变”。当一句古老的谚语“自然不作突变”被用来作为批评量子论的根据时,我们可以回答说:我们的知识无疑是能够突然地变化的,而这个事实证明使用“量子跳变”这个术语是正确的。 因此,在观测作用过程中,发生了从“可能”到“现实”的转变。如果我们想描述一个原子事件中发生了什么,我们必须认识到,“发生”一词只能应用于观测,而不能应用于两次观测之间的事态。它只适用于观测的物理行为,而不适用于观测的心理行为,而我们可以说,只有当对象与测量仪器从而也与世界的其余部分发生了相互作用时,从“可能”到“现实”的转变才会发生;它与观测者用心智来记录结果的行为是没有联系的。然而,几率函数中的不连续变化是与记录的行为一同发生的,因为正是在记录的一瞬间我们知识的不连续变化在几率函数的不连续变化中有了它的映象。 那么,我们对世界,特别是原子世界的客观描述最绔能达到什么样的程度呢,在经典物理学中,科学是从信仰开始的——或者人们应该说是从幻想开始的?——这就是相信我们能够描述世界,或者至少能够描述世界的某些部分,而丝毫不用牵涉到我们自己。这在很大程度上是实际可能做到的。我们知道伦敦这个城市存在着,不管我们看到它与否。可以说,经典物理学正是那种理想化情形,在这种理想化情形中我们能够谈论世界的某些部分,而丝毫不涉及我们自己。它的成功把对世界的客观描述引导到普遍的理想化。客观性变成评定任何科学结果的价值时的首要标准。量子论的哥本哈根解释仍然同意这种理想化吗? 人们或许会说,量子论是尽可能地与这种理想化相一致的。的确,量子论并不包含真正的主观特征,它并不引进物理学家的精神作为原子事件的一部分。但是,量子论的出发点是将世界区分为“研究对象”和世界的其余部分,此外,它还从这样一个事实出发,这就是至少对于世界的其余部分,我们在我们的描述中使用的是经典概念。这种区分是任意的,并且从历史上看来,是我们的科学方法的直接后果;而经典概念的应用终究是一般人类思想方法的后果。但这已涉及我们自己,这样,我们的描述就不是完全客观的了。 在开始时已说过,量子论的哥本哈根解释是从一个佯谬开始的。它从我们用经典物理学术语描述我们的实验这样一个事实出发,同时又从这些概念并不准确地适应自然这样一个认识出发。这样两个出发点间的对立关系,是量子论的统计特性的根源。因此,不时有人建议,应当统统摒弃经典概念,并且由于用来描述实验的概念的根本变化,或许可能使人们回到对自然界作非静态的、完全客观的描述。 然而,这个建议是立足于一种误解之上的。经典物理学概念正是日常生活概念的提炼,并且是构成全部自然科学的基础的语言中的一个主要部分。在科学中,我们的实际状况正是这样的,我们确实使用了经典概念来描述实验,而量子论的问题是在这种基础上来找出实验的理论解释。讨论假如我们不是现在这样的人,我们能做些什么这样的问题,是没有用处的。在这一点上,我们必须认识到,正如冯·威扎克尔(von Webzsacker〕所指出的,“自然比人类更早,而人类比自然科学更早。”这两句话的前一句证明了经典物理学是具有完全客观性的典型。后一句告诉我们,为什么不能避免量子论的佯谬,即指出了使用经典概念的必要性。 我们必须在原子事件的量子理论解释中给实际程序加上若干注释。已经说过,我们的出发点总是把世界区分为我们将进行研究的对象和世界的其余部分,并且这种区分在某种程度上是任意的。举例说吧,如果我们将测量仪器的某些部分或是整个仪器加到对象上去,并对这个重复杂的对象应用量子论定律,在最终结果上确实不应有任何差别。能够证明,理论处理方法这样的一种改变不会改变对已定实验的预测。在数学上这是由于这样一个事实,就是对于能把普朗克常数看作是极小的量的那些现象,量子论的定律近似地等价于经典定律。但如果相信将量子理论定律对测量仪器这样应用时,能够帮助我们避免量子论中的基本佯谬,那就错了。 只有当测量仪器与世界的其余部分密切接触时,只有当在仪器和观测者之间有相互作用时,测量仪器才是名符其实的。因此,就象在第一种解释中一样,这里关于世界的微观行为的测不准性也将进入量子理论系统。如果测量仪器与世界的其余部分隔离开来,它就既不是一个测量仪器,也就根本不能用经典物理学的术语来描述了。 关于这种状况,玻尔曾强调指出,对象和世界其余部分的区分不是任意的这种讲法是更为现实些。在原子物理学中,我们的研究工作的实际状况通常是这样的:我们希望了解某种现象,我们希望认识这些现象是如何从一些普遍的自然规律中推导出来的。由此可见,参与现象的一部分物质或辐射是理论处理中的当然的“对象”,并且在这方面,它们应当和用来研究现象的工具分离开来。这又使得原子事件描述中的主观因素突出出来,因为测量仪器是由观测者创造出来的,而我们必须记得,我们所观测的不是自然的本身,而是由我们用来探索问题的方法所揭示的自然。在物理学中,我们的科学工作在于用我们所掌握的语言来提出有关自然的问题,并且试图从我们随意部署的实验得到答案。正如玻尔所表明的,这样,量子论就使我们想起一个古老的格言:当寻找生活中的和谐时,人们决不应当忘记,在生活的戏剧中,我们自己既是演员,又是观众。可以理解,在我们与自然的科学关系中,当我们必须处理只有用最精巧的工具才能深入过去的那部分自然时,我们本身的活动就变得很重要了。 [book_title]第四章 量子论和原子科学的渊源 原子的概念比十七世纪现代科学的开端要早得多;它起源于古希腊的哲学,在希腊哲学初期,它还是留基伯(Leucippus)和德谟克利特(Democritus)所传授的唯物主义的中心概念。另一方面,原子事件的现代解释和真正的唯物主义哲学已很少类似之地事实上,人们可以说原子物理学已经使科学离开了它在十九世纪所具有的唯物主义倾向。因此,将希腊哲学向原子概念的发展同这一概念现在在现代物理学中的地位作一比较,是颇有趣味的。 首次提出物质的最小的、不可分割的、最终的单位的观念,是和作为希腊哲学初期的标志的关于物质、存在和生成等概念的刻苦钻研相联系的。这时期开始于公元前六世纪,首先是由米利都学派的创始人泰勒斯(Thales)开端的,亚里土多德认为“水是万物的质料因”这个命题就是泰勒斯首创的。这个命题,虽然在我们看来感到很奇怪,但却如尼采(Nietzsche)所指出,表达了哲学的三个基本观念。第一,提出万物的质料因问题;第二,要求对这个问题作出合理的回答,而不求助于神话和神秘主义;第三,假设最终必能把万物还原于一个本原。泰勒斯的命题是关于基本实体观念的第一个表述,他认为所有其他东西都是基本实体的暂时形式。在那个时代所说“实体”一词,当然不是单纯在质料的意义上解释的,如我们今天常常描述它的那样。当时,生命被认为是与这种“实体”相联系或者是这种“实体”所固有的,并且,亚里土多德认为“万物都充满着神”这一命题也是泰勒斯提出的。但是,泰勒斯还是提出了万物的质料因这样一个问题,并且不难设想,他最初是从气象学的考察形成他的观点的。我们知道,在万物之中,水能够取多种多样的形状:它在冬天能取冰和雪的形式,它能变为蒸汽,它能形成云雾。在河流形成三角洲的地方水似乎转化成为土地,水也能从土地中喷出。水是生命的条件。由此可见,假如说有那么一种基本实体,很自然地会首先想到水。 基本实体的观念后来又为阿那克西曼德(Anaximander)进一步发展了,他是泰勒斯的学生,他们生活在同一个城市中。阿那克西曼德否认基本实体是水或者是任何其他已知的实体。他教导说,原始实体是无限的、永恒的和不灭的,它包含着整个世界。这种原始实体转化成为各种各样我们熟悉的实体。德奥弗拉斯特(Theophrastus)引用了阿那克西曼德的一段话:“万物所由之而生的东西,万物又消灭而复归于它,这是命运规定了的,因为万物按照时间的秩序,为它们彼此间的不正义而互相补偿。”在这种哲学中,存在与生成的对立起着基本的作用S原始实体,即无限和永恒的、不能分割的存在,退化成为多种多样的形式,这些形式导致无穷无尽的斗争。生成的过程被看作是无限的存在的一种贬质——即分离成为对立,这种对立又因复归到无形无性的那种东西而最后得到补偿。这里所指的对立是热和冷、火和水、湿和干等对立面。其中一方对另一方的暂时胜利就是不正义,为此,它们最后将按照时间的秩序作出补偿。按照阿那克西曼德的见解,存在着“永恒的运动”,有无穷个世界从无限中产生,又消灭复归于无限。 在这里指出这一点可能是有意思的,“原始实体能不能是一种已知的实体或者它必须是某种本质上不同的东西?”这个问题在原子物理学的最新部门中也以稍微不同的形式发生了。现今,物理学家企图发现一个物质的基本运动定律,使得所有基本粒子和它们的性质都能用数学方法从这个定律推导出来。这个基本运动方程或许与一种已知类型的波有关,例如和质子和介子波有关,或许与一种本质上不同性质的波有关,这种波与任何已知的波或基本粒子都毫无关系。第一种情形意味着所有其他基本粒子都能用某种方法还原为少数几种“最基本的”基本粒子;实际上在过去的二十年中;理论物理学主要遵循了这条研究路线。在第二个情形中,所有不同的基本粒子,都能够还原为某种我们可以称作能量或者物质的普遍实体,但基本粒子中的任何一个都不能比其他的更为“基本”。当然,后一见解与阿那克西曼德的学说更为一致,我相信,在现代物理学中这种见解是正确的。但现在还是让我们继续讨论希腊哲学吧。 米利部学派的第三个哲学家,阿那克西曼德的朋友阿那克西米尼(Anaximenes)教导说,空气是原始实体。“正如我们的灵魂是空气,并且是通过灵魂使我们结成一体一样,嘘气和空气也包围着整个世界。”阿那克西米尼在米利都哲学中引入了凝聚和稀散过程是原始实体变化为其他实体的原因的观念。水蒸汽凝聚为云被看作是一个明显的例子,当然,空气和水蒸汽的差别在那时候还是不知道的。 在爱非斯的赫拉克利特(Heraclitus)的哲学中,生成的概念占有头等的地位。他认为运动着的火是基本的元素。他认为对立面的斗争正是一种和谐,从而解决了将一个基本的本原的观念与现象的无限多样性相协调的困难。对于赫拉克利特,世界同时是一和多,正是各个对立面的“对立关系”构成了一的统一性。他说:“应当知道,战争对一切都是共同的,斗争就是正义,一切都是通过斗争而产生和消灭的。” 将希腊哲学的发展回顾到这里,人们认识到,从开始到这个阶段,它都被一与多之间的对立关系所推动。对于我们的感觉,世界是由物、事件、颜色、声音的无限多样性所构成的。但是为了了解它,我们必须引入某种秩序,而秩序意味着去认识什么是相等的,它意味着某种统一性。由此产生了有一个基本的本原的信仰,而同时也产生了从它导出万物的无限多样性的困难。因为世界是由物质组成的,所以,万物应当有一个质科因的观点是理所当然的出发点。但当人们把基本统一性的观念推到极端,人们就到达无限的和永恒的不可分割的存在,它不管是不是质料的,都不能以它本身解释万物的无限多样性。这就导致存在和生成的对立,并最终导致赫拉克利特的解答:变化本身是基本的本原;正如诗人们颂赞它的:“不朽的变化啊,你革新了世界。”但是变化本身并不是一个质料因,因而在赫拉克利特的哲学中用火来代表它,把它当作一个基本元素,它既是物质,又是一种动力。 在这里我们可以看到,现代物理学在某些方面非常接近赫拉克利特的学说。如果我们用“能量”一词来替换“火”一词,我们差不多就能用我们现在的观点一字不差地来重述他的命题。能量实际上是构成所有基本粒子、所有原子,从而也是万物的实体,而能量就是运动之物。能量是一种实体,因为它的总量是不变的,并且在许多产生基本粒子的实验中可以看到,基本粒子能够实际上用这种实体制成。能量能够转变为运动、热、光和张力。能量可以称为世界上一切变化的基本原因。但是希腊哲学和现代科学观念的这种对比将在后面讨论。 在生活在南意大利的爱利亚的巴门尼德(Parmenides)的教义中,希腊哲学又暂时回到了一的概念。他对希腊思想的最重要的贡献或许是他将纯逻辑推理引人了形而上学。“你不能知道什么是非存在——那是不可能的,——你也不能说出它来;因为能够思维的和能够存在的乃是同一回事。”由此可见,只有一存在,没有生成,没有消亡。巴门尼德根据逻辑推理否认虚空的存在。又因为如他所假定,一切变化都需要虚空,所以他否定了变化,把变化看作是幻觉。 但是哲学不能长久依靠在这种悻论之上。来自西西里南岸的恩培多克勒(Empedocles)第一次从一元论转向某种多元论。为了避免一种原始实体不能解释事物的多样性的困难,他假设有四种基本元素:土、水、空气和火。这几种元素由于受和根的作用而相互混合和分离。这样,爱和恨是永恒变化的原因,在许多方面可象其他四种元素一样看作是有形体的。恩培多克勒以下列图象描述世界的构造:第一,有一个一的无限球体,如巴门尼德的哲学中一样。但在原始实体中,所有四种“根源”都被爱混合在一起。然后,当爱消失,而恨进入时,这些元素有部分分离了,有部分结合了。此后,这些元素全部分离了,爱也就在世界之外了。最后,爱又将元素集合在一起,而们又消失了,这样我们又回到原始的球体。 恩培多克勒的这个学说代表着希腊哲学中转向更为唯物主义的观点的一种肯定的倾向。四种元素与其说是基本的本原,不如说是真实的物质实体。这里第一次表达了这样的观念,就是少数基本不同的实体的混合与分离,解释了事物的无限多样性。多元论从不求助于那些习惯于用基本的本原的概念来思考的人。但它是一种合理的妥协,它避免了一元论的困难,而又容许建立某种秩序。 走向原子概念的第一步是由阿那克萨哥拉(Anaxasoras)迈出的,他是恩培多克勒的同时代的人。他在雅典差不多生活了三十年,大约在公元前五世纪的前半期。阿那克萨哥拉强调混合物的观念,强调一切变化是起因于混合与分离的假设。他假设组成万物的无限小的“种子”的无限多样性。这种种子与恩培多克勒的四种元素无关,有不计其数的不同种子。但是种子被相互混合然后又被分离开来,就这样实现了一切变化。阿那克萨哥拉的学说第一次容许对“混合物”一词作出几何学的解释:因为他说到无限小的种子,它们的混合物可以描绘为就象两类颜色不同的砂子的混合物。种子的数目和相对位置可以变化。阿那克萨哥拉假设在每一物中都包含了所有的种子,只是不同的物中种子的比例有所不同。他说:“万物都在每个物中;也不能使它们分离,但万物有每个物的一部分。”阿那克萨哥拉的宇宙不是由于爱和恨而开始运动的,如恩培多克勒所主张的那样,而是由“奴斯”(nons)推动的,这个字我们可译为“精神”(mind)。 从这个哲学到原子概念只有一步之遥了,而这一步是由留基伯和阿布德拉的德谟克利特同时迈出的。巴门尼德哲学中存在与非存在的对立这里改换为“充满”与“虚空”的对立。存在不只是一,它能够重复无限次。这就是原子,物质的不可分割的最小单位。原子是永恒的和不灭的,但它有一定的大小。运动只能在原子之间的虚空中进行。这样就在历史上首次宣告了有最小的、最终的粒子存在的观念。这种粒子我们称为基本粒子,是物质的基本建筑基石。 按照这种新的原子概念,物质并不仅仅由“充满”所组成,还由“虚空”,由原子在其中运动的虚空所组成。巴门尼德对虛空的逻辑否定“非存在不能存在”,只是忽略了去和经验相适应。从我们现代的观点看来,我们说德谟克利特哲学中原子间的虚空不是无;它是几何学和运动学的负荷者,它使得原子的各种排列与运动成为可能。但是虚空的可能性永远是哲学的一个争论问题。在广义相对论中,所给的答案是几何学由物质产生,或者物质由几何学产生。这个答案更密切地符合许多哲学家的观点,即空间是由物质的广延所规定。但德谟克利特显然背离了这种观点,才使得变化与运动成为可能。 德谟克利特的原子全都是具有存在特性的相同的实体,但有不同的大小和不同的形状。因此,它们被描绘为在数学意义上是可分的,而在物理意义上是不可分的。原子能够运动并能占有空间中的不同位置。但它们没有其他的物理性质。它们既无颜色,又无嗅味,也无滋味。我们的感觉器官所感知的物质的性质,被设想为由原子在空间中的位置和运动所引起。正象悲剧和喜剧都能用同一种字母的文字写出一样,这个世界中事件的巨大多样性也能由同样的原子通过它们的不同排列和运动而实现。几何学与运动学,是虚空才使得它们成为可能的,它们在某些方面显得比纯粹的存在更为重要。曾有人引证德谟克利特的话:“物仅仅显现出有颜色,仅仅显现出是甜还是苦。只有原子和虚空才是真实的存在。” 在留基伯的哲学中,原子并不仅是由于偶然的机缘而运动。看来留基伯相信完全的决定论,因为我们知道他曾说过:“没有什么是可以无端发生的,万物都是有理由的,而且都是必然的。”原子论者对原子的原始运动并没有讲出任何理由,这恰恰表明他们考虑到了原子运动的因果描述;因果性只能以早先的事件来解释以后的事件,但它决不能解释开端。 原子论的基本观念为以后的希腊哲学所接受并作了部分修改。为了与现代原子物理学作比较,谈一谈柏拉图(Plato)在他的对话《蒂迈欧篇》(Timaeus)中所作的关于物质的解释是重要的。柏拉图不是原子论者,相反,第欧根尼·拉尔修(Diosenes Laertius)曾介绍说,柏拉图嫌恶德谟克利特到这样的程度,以致他甚至希望烧毁德谟克利特的全部著作。但是,柏拉图把接近原子论的观念与毕达哥拉斯(Pythagoras)学派的学说和恩培多克勒的教义结合起来。 毕达哥拉斯学派是神秘主义的一个主派,它起源于酒神的礼拜仪式。这里早已建立了宗教与教学的联系,而数学从那时以来,已对人类思想发生了最强烈的影响。毕达哥拉斯派似乎最早认识到数学形式化所固有的创造力。他们发现,如果两条弦的长度成简单的比例,它们将发出谐音,这个发现表明,数学对理解自然现象能有多么大的意义。对于毕达哥拉斯派,这甚至不是一个理解的问题。在他们看来,弦的长度间的简单的数学比例创造了声音的谐和。在毕达哥拉斯学派的学说中还包含许多我们难以理解的神秘主义。但是,由于他们把数学当作他们的宗教的一部分,他们接触到人类思想发展中的一个主要点。这里我可以引伯特兰·罗素(Bertrand  Russell)关于毕达哥拉斯的一句话:“我不知道还有什么别人对于思想界有过象他那么大的影响。” 柏拉图知道毕达哥拉斯派所完成的关于正多面体的发现以及将它们与思培多克勒的四个元素结合的可能性。他将元素上的最小部分与立方体相比,元素空气的最小部分与八面体相比,元素火的最小部分与四面体相比,元素水的最小部分与二十面体相比。没有元素相当干十二面体;这里相拉图只是说:“神用以勾划宇宙的还有第五种结合方式。’ 如果代表四种元素的正多面体确能和原子相比较的话,柏拉图已弄清它们不是不可分割的。柏拉图用两种基本的三角形———等边三角形和等腰三角形——构成了正多面体,这些三角形彼此连接而构成多面体的表面。因此,元素能够(至少部分地)相互转换。正多面体可以拆成一些组成它们的三角形,并由这些三角形构成新的正多面体。例如,一个四面体和两个八面体能够拆成二十个等边三角形,它们又能重新结合成一个二十面体。这意味着:一个火原子和两个空气原子能够结合而得出一个水原子。但是基本三角形不能看作是物质,因为它们在空间中没有广延。只有当把一些三角形放在一起构成一个正多面体,才产生出一个物质单位。物质的最小单位不是德谟克利特的哲学中那种基本的存在,而是数学的形式。这里十分明显,形式比以它为形式的实体更重要。 在这样简要地考察了希腊哲学直到原子概念的形成之后,我们可以回到现代物理学,并提出一个问题:我们关于原子和量子论的现代观点如何同这种古代的发展相比较,历史上,在十七世纪的科学复兴时代,现代物理学和化学中的“原子”一词被用在错误的对象上,因为一个称为化学元素的最小粒子仍然是由一些更小单位组成的颇为复杂的系统。这些更小的单位现个称为基本粒子,显然,如果现代物理学中有某种东西可与德谟克利特的原子相比较的话,这应当是象质子、中子、电子、介子那样的基本粒子。 德谟克利特很了解这样一个事实:如果说原子能够以它们的运动和排列来解释物质的性质——颜色、嗅味、滋味,那么,它们本身则不能具有这些性质。因此,他把这些性质从原子身上去掉,这样,他的原子是物质的更为抽象的部分。但是,德谟克利特给原子保留了“存在”的性质,即在空间中广延的性质,形状和运动的性质。他之所以保留这些性质,是由于如果这样一些性质也被去掉的话,归根到底就很难谈论原子了。另一方面,这也暗示了他的原子概念不能解释几何学、空间中的广延或存在,因为不能将它们简化为某种更基本的东西。考虑到这一点,基本粒子的现代观点似乎更为前后一致和更为彻底、让我们来讨论这样一个问题:什么是基本粒子,我们简单地回答,譬如说,“中子是基本粒子”,但我们不能给“中子”一幅确切的图象,并且说明我们用这个词表示了什么。我们能够使用几幅图象,有时把它描述为一个粒子,有时又描述为波或波包。但我们知道这些描述没有一个是准确的。当然,中子没有颜色,没有嗅味,没有滋味。在这方面,它与希腊哲学的原子相类似。但是,甚至还有其他一些性质也至少在某种程度上从基本粒子身上去掉了;几何学和运动学的概念,例如形状或空间中的运动,已不能够前后一致地对它加以应用了。如果人们希望对基本粒子作准确的描述——这里着重点是在“准确”一词上,那么,唯一能写下作为描述的东西是一个几率函数。但是,在另一方面,人们看到,甚至存在的性质(如果那可以称为“性质”的话)也不属于被描述的东西了。它是存在的一种可能性,或者存在的一种倾向。由此可见,现代物理学的基本粒子比希腊人的原子更为抽象,并且它正是由于这个性质,才能够重前后一致地作为解释物质行为的线索。 在德谟克利特的哲学中,所有原子均由同样的实体组成,如果“实体”一词一定要在这里应用的话。现代物理学中的基本粒子同样是在受限制的意义上具有质量,就同它们在受限制的意义上还具有其他的性质一样。因为根据相对论,质量和能量本质上是相同的概念,所以我们可以说,所有基本粒子都由能量组成。把能量定义为世界的原始实体,就能解释这一点了。确实,它仍包含属于“实体”这个术语的主要性质,那就是它是守恒的。因此,前面已经说过,现代物理学的观点在这方面非常接近于赫拉克利特的观点,如果人们把他的元素火理解为能量的话。能量事实上就是运动之物;它可以称为一切变化的原始原因,并且能量能够转化为物质、热或光。赫拉克利特哲学中的对立面的斗争能够在不同形式的能量之间的斗争中发现。 在德谟克利特的哲学中,原子是物质的永恒的、不可毁灭的单位,它们决不能相互转化。关于这个问题,现代物理学采取了明确地反对德谟克利特的唯物主义而支持柏拉图和毕达哥拉斯的立场。基本粒子的确不是永恒的、不可毁灭的物质单位,它们实际上能够相互转化。事实上,如果两个这样的粒子以很高的动能在空间中运动,并且互相碰撞,那么,从有效能量可以产生许多新的基本粒子,而原来的两个粒子可以在碰撞中消失。这样的事件常常被观察到,并为所有的粒子均由同一种实体——“能量”——制成的论断提供了最好的证据。但是,现代观点和柏拉图与毕达哥拉斯的观点的类似性还多少能进一步发展。柏拉图的《蒂迈欧篇》中的基本粒子最终不是实体,而是数学形式。“万物皆数”,这是毕达哥拉斯的名言。那时唯一应用的数学形式是这样一些几何形式,例如正多面体或构成它们表面的三角形。在现代量子论中,无疑地,基本粒子最后也还是数学形式,但具有更为复杂的性质。希腊哲学家想到的是静态的形式,并想象它们取正多面体形式。然而,现代科学从十六和十七世纪开创时期起,就是从动力学问题出发的。自牛顿以来,物理学中的恒定因素不是位形,或者几何形状,而是动力学定律。运动方程在任何时候都成立,它在这个意义上是永恒的,而几何形状,例如轨道,却是不断变化的。由此可见,代表基本粒子的一些数学形式将是某种永恒的物质运动律的一些解。实际上这是一个尚未解决的问题。物质的基本运动律还不知道,因此还不能用数学方法从这样一个定律推导出基本粒子的性质。但是处于目前状态的理论物理学似乎距离这个目的已不很遥远了,我们至少能够说,我们必须预期得到怎样一类定律。最终的物质运动方程或许是某种关于算符的波场的量子化非线性波动方程,这里波场仅仅代表物质,而不代表任何特种类型的波或粒子。这个波动方程或许和一些相当复杂的积分方程组等价,这些积分方程具有物理学家所称的“本征值”和“本征解”。这些本征解最后将代表基本粒子;它们是将要代替毕达哥拉斯的正多面体的数学形式。我们可以在这里指出,这些“本征解”将从物质的基本方程推出,所用的数学方法与从弦的微分方程推出毕达哥拉斯弦的谐振动的方法是十分类同的。但是,前面已指出,这些问题尚未解决。 如果我们追随毕达哥拉斯的思路,我们可以希望基本的运动律最后将是一个数学上很简单的定律,即使对各本征态求值的计算可以是很复杂的。关于这种对简单性的期望,难以举出任何充分的论据——一除了这样一个事实:即迄今为止,总是能够以简单的数学形式写下物理学中的基本方程。这个事实与毕达哥拉斯的宗教相符合,而许多物理学家在这方面也具有同样的信仰,但还没有一个令人信服的论据足以证明它必然如此。 在这里我们可以对普通人常常提出的关于现代物理学中基本粒子概念的问题,再发一点议论。这个问题是:为什么物理学家主张他们的基本粒子不能分成更小的部分,这个问题的答案清楚地表明,现代科学比起希腊哲学来要更为抽象到什么程度。论证过程如下:人们怎样才能分裂一个基本粒子,当然只有利用极强的力和非常锐利的工具。唯一适用的工具是其他基本粒子。可见,两个非常高能的基本粒子间的碰撞是能够实际分裂粒子的唯一过程。实际上,它们在这样的过程中能够被分裂,有时分成许多碎片;但碎片仍然是基本粒子,而不是它们的任何更小的部分,这些碎片的质量是由两个相碰粒子的非常巨大的动能产生的。换句话说,能量转换成为物质,使得基本粒子的碎片仍然能够是同样的基本粒子。 在将原子物理学中的现代观点和希腊哲学作了类比之后,我们必须补充一个警告,即对这种类比不应有所误解。乍看起来,似乎希腊哲学家由于某种天才直觉而得到了与我们现代相同或很相似的结论,而我们的结论却是经过几个世纪的实验和数学方面的艰苦劳动才得到的。对我们的类比的这种解释无论如何是一种完全的误解。在现代科学和希腊哲学之间有着巨大的差别,那就是现代科学的经验主义态度。自从伽利略(Galileo)和牛顿的时代以来,现代科学就已奠基于对自然的详细研究之上,奠基于这样一个假设之上,这就是:只有已被实验证实的或至少能被实验证实的陈述才是容许作出的。为了研究细节并在连续不断的变化中找到经久不变的定律,人们可用一个实验在自然中隔离出若干事件,这种观念希腊哲学家是没有想到过的。由此可见,现代科学在一开始就立足于一个比古代哲学更谨慎同时也更巩固得多的基础之上。因此,现代物理学的陈述在某种意义上比希腊哲学更严肃得多。譬如,当柏拉图说火的最小微粒是四面体时,人们很不容易了解什么是他的真实意思。是不是四面体的形式仅仅象符号一样附加在元素火的上面的,还是火的最小微粒的力学行为就象一个刚性四面体或一个弹性四面体那样呢?用什么力才能够将它们分成一些等边三角形呢,还有一些诸如此类的问题。现代科学到最后总要问:人们怎样能从实验上肯定火的原子是四面体而不是立方体,因此,当现代科学说质子是基本物质方程的某个解时,这意味着我们能从这个解用数学方法推导出质子的全部可能性质,并且能用实验从每个细节上验证这个解的正确性。以很高的准确度并在任意数量的细节上用实验验证一个陈述的正确性的这种可能性,给这个陈述以古希腊哲学的陈述所不能具有的巨大份量。 尽管如此,古代哲学的若干陈述还是颇接近于现代科学的那些陈述。这只是表明,将我们未曾做过实验就具有的关于自然的日常经验,同在这种经验中寻求某种逻辑秩序以便根据普遍原理来理解这种经验的不懈努力相结合,人们能够到达怎样的境地。 [book_title]第五章 自笛卡儿以来哲学观念的发展和量子论的新形势的比较 在公元前四、五世纪希腊科学文化全盛时期后的两千年内,与早期那些问题不同类型的一些问题在很大程度上占据了人类的心灵。在希腊文化的头几个世纪,最强大的推动力是来自我们在其中生存并为我们所感觉的世界的真正实在。这种实在充满了生命,并且没有充分的理由强调物质与精神、或者由体与灵魂的区别。但在柏拉图的哲学中,人们已看到另一种实在开始抬头了。杜拉图在著名的洞穴的比喻中,将人比作洞穴中的囚犯,他们被捆缚着,只能朝一个方向看。在他们身后有一堆火,他们能从墙上看到他们自己和他们身后物体的影子。因为他们除了影子看不到任何其他东西,他们就把这些影子看作是实在的,而不知道物体本身。最后,囚犯之一逃跑了,从洞穴来到了阳光下。他这才第一次看到了真实的东西,并且认识到他过去一直被影子所欺骗。他这才第一次知道了真理,只能悲伤地回忆他在黑暗中度过的漫长生涯。真正的哲学家就是从洞穴逃到真理之光中的囚犯,他是一个具有真实知识的人。与真理的这种直接联系,或者我们可以用基督教徒的话说,与上帝的直接联系,是一种新的实在。这种实在已开始比我们的感官所感知的世界这一实在变得更强了。与上帝的直接联系是在人类的灵魂中,而不是在世界上发生的,自柏拉图以来的两千年内,这是比任何其他事情更费人思考的问题。在这个时期内,哲学家的眼睛是朝着人类的灵魂和它与上帝的关系,朝着伦理学问题,朝着天启的解释,而不是朝着外部世界。只有到了意大利文艺复兴时代,才能看出人类精神的一种缓慢的变化,它最后复活了对自然的兴趣。 自从十六、十七世纪以来,与科学基本概念密切联系的哲学观念的发展,成为自然科学巨大发展的前驱,并相互影响。因此,从现代科学在今天所最终到达的地位出发来评价这些观念可能是有益的。 这个科学的新时代的第一个大哲学家是勒来·笛卡儿(Ren6Descartes),他生活于十七世纪的前半期。他的那些对科学思想发展最为重要的观念,包含于他的《方法论》(Discourseon Method)之中。根据怀疑和逻辑推理,他试图为哲学体系找到一个全新的并如他所想象的那样坚实的基础。他不接受天启作为这样的基础,他也不愿不加批判地接受感官所感知的东西作为这样的基础。所以,他从他的怀疑方法开始。他对我们的感觉所告诉我们的关于我们推理结果的意见表示怀疑,最后他得到了他的名言:“我思故我在”(cosito er so sum)。我不能怀疑我的存在,因为这是由我在思想这一事实推论出来的。在用这种方法建立了我的存在之后,他基本上沿着经院哲学的路线,进一步证明上帝的存在。最后,从上帝给我以相信世界存在的强烈倾向这一事实出发,推论出世界的存在,因为上帝是绝对不可能欺骗我的。 笛卡儿哲学的这个基础与古代希腊哲学家的基础根本不同。这里的出发点不是基本的本原或实体,而是一种基本知识的尝试。并且笛卡儿认识到,我们对自己内心的了解比我们对外部世界的了解更为确实。但是他的出发点——上帝-世界-我这个“三角形”——却危险地简化了进一步推理的基础。开始于柏拉图哲学的物质与精神或灵魂与肉体的区分现在是完成了。上帝既和我相区别,又和世界相区别。上帝事实上被提到超乎世界和人类之上这样的高度,以致于他最终出现在笛卡儿的哲学中只是作为建立我与世界之间的关系的一个共同参考点。 古希腊哲学曾试图通过寻求某种基本统一的本原来找到事物的无限多样性中的秩序,而笛卡儿则试图通过某种基本的区分来建立秩序。但是由于区分而形成的三个部分将多少失去它们的真义,如果其中任一部分被认为是同其他两部分区分出来的话。如果人们终究要使用笛卡儿的基本概念的话,重要的一点是上帝在世界与我之中,同样重要的是不能把我真正和世界分开。笛卡儿当然知道联系的无可争辩的必然性,但是以后的哲学和自然科学却在“思维实体”(rescogitans)和“广延实体”(res extensa)的两极基础上发展,而自然科学的兴趣集中在“广延实体”上。笛卡儿的区分对其后几个世纪人类思想的影响是怎样估计也不会过高的,但是,由于当代物理学的发展,下面我们必须加以批判的正是这种区分。 当然,说笛卡儿的新哲学方法开辟了人类思维的新方向,那是错误的;他所做的实际上只是第一次系统地表述了在意大利文艺复兴和宗教改革时代已露端倪的人类思维的倾向。这种倾向就是对数学的兴趣的复活(这表现了哲学中柏拉图成分日益增长的影响)和对人格宗教的极力强调。对教学的日益增长的兴趣倾向于这样一种哲学体系,这种哲学体系从逻辑推理开始,并试图以这种方法得到某些象数学结论那样肯定的真理。对人格宗教的强调将我及其与上帝的关系同世界区分开来。如从伽利略的工作可以看出的,将经验知识和数学结合的兴趣,或许部分地是由于用这种方法,能够得到某种能完全避免宗教改革所引起的神学争论的知识。这些经验知识能够用公式表示,而不用谈到上帝或我们自身,同时,这些知识倾向于将上帝一世界一我这三个基本概念区分开,或者将“思维实体”与“广延实体”区分开。在这个时期中,在经验科学的先驱者当中有时似乎有一个明确的协议,这就是在他们的讨论中不应当提到上帝的名字和根本的原因。 另一方面,区分的困难从一开始就能清楚地看出来。例如,在区分“思维实体”与“广延实体”时,笛卡儿不得不把动物全部归入“广延实体”之中。因此,动物和植物与机器就没有本质的区别,它们的行为完全由质料因所决定。但是,要完全否认动物中有某种灵魂存在,总似乎是困难的,即令我们确信物理学和化学定律在生命机体中也严格成立,对于我们来说,象托马斯·阿奎那(ThomasAquinas)的哲学中较陈旧的灵魂概念似乎也还比笛卡儿的“思维实体”概念更为自然,更不勉强。笛卡儿这种观点的后果之一是:如果把动物仅仅看作是机器一样的东西,就很难不设想人也是一样。在另一方面,因为“思维实体”与“广延实体”被认为在本质上完全不同,它们就似乎是不可能彼此相互作用的。因此,为了保持精神经验与肉体经验间的完全平行性,精神在其活动中也应当由一些同物理学和化学定律相对应的规律完全地决定。这里就产生了“自由意志”的可能性问题。显然,整个这种描述多少是有点人为的,它也显示了笛卡儿分类的严重缺陷。 另一方面,在自然科学中,这种分类在几个世纪以来是极为成功的。牛顿力学和所有以它为模型而建立的其他经典物理部门,都是从这样一个假设出发的,这就是假设人们能够描述世界,而不需要提到上帝或我们自身。很快地,这种可能性似乎差不多成为一般自然科学的必要条件。 但是,在这一点上,通过量子论,形势有了某种程度的变化,因此我们现在可以着手将笛卡儿的哲学体系和现代物理学中我们的现状作一比较。前面已经指出,在量子论的哥本哈根解释中,我们确实能够有所进展,而不用提到作为个人的我们自身,但是,我们也不能忽略自然科学是由人建立起来的这个事实。自然科学不单单是描述和解释自然;它也是自然和我们自身之间相互作用的一部分;它描述那个为我们的探索问题的方法所揭示的自然。这或许是笛卡儿未能想到的一种可能性,但这使得严格把世界和我区分开成为不可能了。 在理解和接受量子论的哥本哈根解释方面,人们感到巨大的困难,即令是杰出的科学家爱因斯坦也不例外,人们可以从笛卡儿的分类那里追踪到这种困难的根源。在笛卡儿以来的三个世纪中,他的这种分类已经深深地渗入人类的心灵,因此要把实在这个问题用一个根本不同的方式来替代,是需要很长的时间的。 关于“广延实体”,笛个儿的分类所持的立场是人们可以称之为形而上学的实在论。世界,即广延之物“存在”着。这和实用的实在论是有区别的。实在论的几种不同形式可以描述如下。如果我们要求一个陈述的内容不依赖于它能被证实时所处的那些条件,我们就把这个陈述“客观化”了。实用的实在论假设,确有一些陈述能被客观化,事实上,我们的日常生活经验绝大部分是由这样一些陈述所组成。教条的实在论要求所有有关物质世界的陈述都能够客观化。实用的实在论过去一直是、今后也永远是自然科学的主要部分。然而,教条的实在论,如我们现在所看到的,则不是自然科学的一个必要条件。但它在过去科学的发展中起了十分重要的作用;实际上,经典物理学的立场就是教条实在论的立场。只有通过量子论,我们才懂得精密科学不以教条的实在论为基础是可能的。当爱因斯坦批评量子论时,他正是从教条的实在论的基础上出发的。这是十分自然的态度。每一个从事研究工作的科学家都感到他正在研究的东西是客观地真实的。他力求使他的陈述不依赖于它们能被证实时所处的那些条件。特别在物理学中,我们能用简单的数学定律解释自然这一事实告诉我们,在这里我们接触到的是实在的某种真正的特征,而不是我们自己所捏造出来的某种东西(从任何字面的意义上来理解)。这正是当爱因斯坦取教条的实在论作为自然科学基础时,他在内心所持的立场。但是,量子论本身就是能够不用这个基础而只用简单的数学定律解释自然的例子。如果人们拿这些定律和牛顿力学相比较,它们似乎不十分简单。但是,如果考虑到被解释的现象的巨大复杂性(例如复杂原子的光谱线),量子论的数学方案还算是比较简单的。自然科学实际上是能够不以教条的实在论为基础的。 形而上学的实在论认为“事物真正在在着”,从而比教条的实在论更前进了一步。这实际上就是笛卡儿企图用“上帝不能欺骗我们”的这个论据来证明的东西。就这里出现“存在”这个词来说,事物真正存在着这个陈述是不同于教条的实在论的陈述的,就这里出现的“存在”这个词来说,同它在另一陈述“我思故我在”中具有同样的意义。……“我思,故我在。”但是,在这里,这个尚未包含在教条的实在论的命题中的意义却是很难理解的;这就引导我们对“我思故我在”这个陈述作出一般性批评,而笛卡儿是把它当作他能在其上建立他的体系的坚实基础。确确实实,这个陈述具有和数学结论一样的确定性,如果“我思”与“我在”等词是用日常方式定义的话,或者,更谨慎同时更严格地讲,如果上述两词定义的方式使得上述陈述可以随之作出的话。但是,这什么也不能告诉我们,究竟我们在探索我们的道路时,我们能使用“思维”和“存在”的概念到怎样的程度。归根结蒂,在很普遍的意义上,总有这样一个经验性的问题:我们的概念究竟能使用到怎样的程度, 形而上学的实在论的困难,在笛卡儿之后就立刻被感觉到了,并且成了经验论哲学、成了感觉论和实证论的出发点。 可以作为早期经验论哲学的代表的三位哲学家是洛克(Locke)、贝克莱(Berkaly)和休谟(Hume)。与笛卡儿相反,洛克认为,一切知识最终都以经验为基础。这种经验可以是感觉或我们心智作用的知觉。洛克这样说:知识是两种观念符合或不符合的知觉。第二步是贝克莱迈出的。如果实际上我们的知识是由知觉推导出来的,那么,说事物真实存在的陈述就没有意义了;因为只要知觉是既定的,不管事物存在还是不存在,都不可能有任何差别。因此,被知觉到就是等同干存在。这条论证的路线后来又被休谟发展到极端的怀疑论,他否认归纳法和因果关系,并由此得到这样一个结论,要是认真地采纳它,就会摧毁全部经验科学的基础。 已在经验论哲学中所表现的对形而上学实在论的批评,就它是反对朴素地使用“存在”上词的警告来说,那当然是正确的。这种哲学的实证的陈述也能从相似的路线加以批评。我们的知觉最初并不是一堆颜色或声音;我们所知觉的已经是被知觉的某物,这里的重点是在“物”一词上,因此,用知觉代管物作为实在的最终元素,我们是否能得到什么东西,是值得怀疑的。 现代实证论者已清楚地认识到基本的困难。这条思维路线表达了对朴素地使用如“物”、“知觉”、“存在”这样一些术语的批评,其方法是通过一般的假设:一个已定句子究竟有无意义这样的问题应当永远受到彻底和严格的审查。这个假设和它的基本态度是从数理逻辑推导出来的。自然科学的步骤被描绘为就象是在现象上附加上一些符号。就象在数学中一样,这些符号能按照一定的规则结合起来,这样,关于现象的陈述就能用符号的组合来表示。然而,不按照规则行事的符号组合并不是错误的,而只是没有意义而已。 这种论证的明显困难是没有一个普遍的判据来判别一个句子在什么时候应被认为是没有意义的。只有当句子属于一个概念和公理的闭合系统时,才有可能作出确定的判断,这在自然科学的发展中与其说是惯例,不如说是一个例外。在某些情况下,关于某个句子是没有意义的推测,曾经导致历史上的重要进展,因为它开辟了建立新的联系的道路,而这种新联系在句子是有意义的条件下是不可能建立的。前面讨论过的量子论中的一个例子就是这样的句子:“电子在什么样的轨道中绕着原子核运动?”但是,一般地讲,从数理逻辑所作出的实证论方案在对自然的描述中是太狭窄了,对自然的描述必须使用仅有含糊的定义的词与概念。 一切知识最终都以经验为基础这样一个哲学命题,最后导致一个有关自然的任何陈述都有逻辑明确性的假设。这样的假设似乎在经典物理学时期就已经被证实了,但是自从量子论建立以来,我们已知道它不能成立。例如,一个电子的“位置”和“速度”等词,不论在它们的意义上和它们可能的联系上,似乎全都很好地定义了,事实上,它们是在牛顿力学的数学框架中明确地定义了的概念。但是,从测不准关系看来,实际上它们并没有很好地被定义。人们可以说,考虑到它们在牛顿力学中的地位肘,它们是很好地定义了的,但在它们和自然的关系方面,它们并没有很好地定义下来。这表明,我们决不能预先知道,在把我们的知识推广到只能用最精密的仪器才能深入进去的自然的微小部分中去时,对某些概念的适用性应该加上什么样的限制,因此,在深入过程中,有时我们不得不这样使用我们的概念,这种使用方式既不正当,也没有任何意义。坚持完全的逻辑明确性这一假设会使得科学成为不可能。在这里,现代物理学使我们想起一句古老的格言:一个人坚持要不讲一句错话,那就得永远默不作声。 在德国唯心主义的奠基人康德(kant)的哲学中,企图把两条思维路线结合起来,其中一条是从笛卡儿开始的,另一条是从洛克和贝克莱开始的。和现代物理学的结果相比较,康德有一部分工作是重要的,这部分工作包含在《纯粹理性批判》(The Critique of Pure Reason〕一书中。他提出了一个问题:知识是否仅仅起源于经验,或者还能来自其他的源泉,他得出的结论是:我们的知识有一部分是“先天的”(apriori),而不是从经验归纳地推论出来的。因此,他区分了“经验的”知识和“先天的”知识。同时,他也区分了“分析”和“综合”的命题。分析的命题仅仅从逻辑推出,如果否认它们将导致自相矛盾。所有不是“分析”的命题,就称为“综合”的命题。 根据康德的见解,什么是“先天的”知识的标准呢,康德同意,一切知识从经验开始,但他又加上一句,知识并不总是从经验推导出来的。确实,经验告诉我们某种东西有这样或那样的性质,但经验并不告诉我们它不能是别的。因此,如果一个命题是和它的必然性一同被想出的,它就必定是“先天的”。经验从来没有赋予它的判断以完全的普遍性。例如,“太阳在每天早晨升起来”这句话意味着我们知道在过去这个规律没有例外,并且我们预料它在未来仍然成立。但我们可以想象这个规律的例外。如果一个判断是以完全的普遍性来陈述的,那么,如果不能想象有任何例外,它就必定是“先天的”。一个分析的判断总是“先天的、即令一个小孩是从玩弹子中学到算术的,他也不需要在以后去重新体验以理解“二加二等于四”的论断。另一方面,经验知识是综合的。 但是先天的综合判断是可能的吗,康德试图用似乎满足上述标准的例子来证明这一点。他说,空间和时间是纯直观的先天形式。在空间的例子中,他作出了下述形而上学的推论: 1.空间不是一个从其他经验抽象出来的经验概念,因为在认为某些感觉是起因于外部的某些东西时,一定要以空间观念作为前提,而且外部经验只有通过空间的表象才是可能的。 2.空间是构成一切外部知觉的基础的必要的、先天的表象;因为我们不能设想没有空间,虽然我们能够设想在空间中没有任何东西。 3.空间不是一个关于一般物的关系的推论概念或一般概念,因为只有一个唯一的空间,而我们所说的各种“空间”,都是那独一无二的空间的各个部分,而不是它的各种实例。 4.空间被表象为一个无限的给定的量,它把空间的一切部分囊括于自身之内;这种关系不同于概念对其实例的关系,因此空间不是一个概念,而是一个直观形式。 这些论证将不在这里讨论。提到它们,仅仅是作为在康德心目中关于先天的综合判断的一般类型证明的一个例子。 在物理学方面,除了空间和时间之外,康德认为因果律和实体概念也是先天的。在他的工作的后一阶段,他还试图把物质不灭定律、“作用和反作用”相等、甚至万有引力律也包括在内。在这方面没有一个物理学家愿意追随康德,如果“先天的”一词是在康德给它的绝对意义上来使用的话。在数学方面,康德把欧几里得几何学看作是“先天的”。 在我们将康德的这些学说和现代物理学的结果作比较之前,我们必须提到以后我们要引用到的他的另一部分工作。曾经成为经验论哲学的起因的“事物是否真正存在”这个可厌的问题,也在康德的体系中出现过。但是康德并没有追随贝克莱和休谟的路线,虽然那条路线在逻辑上较为前后一致。他保留了不同于知觉的“物自体”的观念,这样也就保留了与实在论的某种联系。 现在来将康德的学说和现代物理学作比较,首先,看起来好象他的“先天的综合判断”的中心概念已被本世纪的发现完全消灭了。相对论已改变了我们的时空观念,事实上,它已揭示了空间和时间的全新特征,这些特征在康德的纯直观的先天形式中是一点也看不出的。因果律在量子论中不再适用,物质不灭律对于基本粒子也不再成立。虽然康德不能预见这些新的发现,但是既然他确信他的概念是“任何能称为科学的未来的形而上学的基础”,那么看一看他的论证在那里错了,是有意义的。 我们举因果律作为一个例子。康德说,每当我们观察一个事件,我们都假设有一个居先的事件,跟着那个事件必有另一个事件按照某种规律随着发生。这,如康德所论述,是一切科学工作的基础。在这个讨论中,我们是否总能找到为另一事件所跟随的居先事件,这并不重要。实际上,在许多情况下,我们能找到它。而且即使我们不能找到它,也没有任何东西能阻挡我们询问这个居先事件可能是什么并且去寻找它。由此可见,因果律归结为科学研究方法;它是科学能够成立的先决条件。既然我们实际上应用了这种方法,因果律就是“先天的”,而不是从经验推导出来的。 这在原子物理学中也正确吗?让我们考察一个能够发射出一个alpha粒子的镭原子。发射alpha粒子的时间不能预测。我们只能说平均起来辐射将在大约两千年内发生。因此,当我们观测发射,我们并不实际寻找那个使得发射必定按照某种规律随之发生的居先事件。从逻辑上说,完全有可能寻找这样一个居先事件,我们不必因为迄今为止还没有人发现这种事实而沮丧失望。但是为什么在这个自康德以来一直是很根本性的问题中,科学方法实际上已经改变了呢, 对这个问题可以作出两个可能的答案。一个是:根据经验,我们确信量子论的定律是正确的,如果是这样的话,我们知道,作为发射在一个给定时间发生的原因的居先事件是无法找到的。另一个答案是:我们知道居先事件,但并不十分准确。我们知道,引起alpha粒子发射的是原子核中的力。但是,这种知识中包含了原子核与世界的其余部分之间的相互作用所带来的不确定性。如果我们想要知道为什么alpha粒子在那个特定时间发射,我们必须知道包括我们自身在内的整个世界的微观结构,而这是不可能的。由此可见,康德关于因果律先天性的论证就不再成立了。 对于作为直观形式的空间和时间的先天特性也能作类似的讨论。结果将是一样的。康德认为是一种不容争辩的真理的先夭概念不再包含在现代物理学的科学体系中了。 然而它们在多少不同的意义上构成了这个体系的主要部分。在量子论的哥本哈根解释的讨论中,曾经强调指出,我们在描述我们的实验装置时,更一般地讲,在描述不属于实验对象的那部分世界时,使用了经典概念。包括时间、空间和因果性在内的这些经典概念的使用,事实上是观测原子事件的条件,并且是“先天的”(在这个词的本义上说)。康德所没有预料到的是这些先天的概念能够作为科学的条件而同时只能在有限的范围内适用。当我们作一个实验,我们必须假设有一条事件的因果链,这条链从原子事件开始,通过仪器,最后到达观测者的眼睛;如果不假设这种因果链,关于原子事件就毫无所知了。然而我们也必须牢记经典物理学和因果性只有有限的运用范围。康德所未能预见的正是量子论的这种基本佯谬。现代物理学已经改变了康德关于先天的综合判断的可能性的陈述,将它从形而上学的陈述转变为实用的陈述。这样,先天的综合判断便具有相对真理的特征。 如果人们用这种方式重新解释康德的“先天性”,就没有理由认为,知觉是给予的,而事物却不是。就象是在经典物理学中一样,我们能够象谈论那些被观察到的事件那样谈论那些未被视察的事件。因此,实用的实在论是新解释的固有的部分。在考察康德的“物自体”时,康德曾指出,我们不能从知觉作出关于“物自体”的任何结论。这种陈述,如威和克尔所指出,在如下的事实中有它的形式类似性,就是虽然在所有的实验中使用了经典概念,原子对象的 非经典行为仍是可能的。对于原子物理学家,“物自体”最终是一 种数学结构,如果他一定要使用“物自作”这个概念的话Z但是这种 数学结构——与康德相反——是间接地从经验推导出来的。 在这种新解释中,康德的“先天性”是与经验间接联系的,不过 这些经验是通过长时期以来人类精神的发展而形成的。生物学家洛伦兹(L0rentz)遵循这种论据,曾经把“先天的”概念和动物中称为“遗传的或天赋的安排”的行为形式作了比较。对于某些原始动物,空间和时间不同于康德所谓的我们对空间和时间的“纯直观”,这确实是完全说得通的。后者可以属于“人”这个种类,但不属于不依赖于人的世界。但是,在追随对“先天性”的这种生物学解释时,我们或许进入了过于假想的讨论了。这里所论述的仅仅是作为一个例子来说明,“相对真理”一词当与康德的“先天性”相联系时能够作怎样的解释。 现代物理学在这里被用作检验若干以往的重要哲学体系的结果的一个例子,或者说一个模型,这些哲学体系过去当然被认为是在更广阔得多的领域内也成立的。我们已经学到的,特别是从对笛卡儿和康德的哲学的讨论中所学到的,或许可叙述如下: 在过去通过世界和我们自身的相互作用所形成的任何词和概念,在它们的涵义方面,都不是真正严格地规定了的;这就是说,我们不能准确地知道,在寻求我们在世界中的途径方面,它们对我们会有多大帮助。我们常常知道,能将它们应用于广阔范围的内外经验,但实际上我们永不能准确地知道它们适用的范围。即使对最简单和最普遍的概念如“存在”和“空间和时间”来说,这也是如此。由此可见,仅靠单纯推理,要得到某种绝对真理是决不可能的。 然而,概念在它们的相互联系方面,可以严格地规定。当概念变成能用一个数学方案前后一致地表示的公理和定义的系统的一部分时,这确实是事实。这样一级有联系的概念可以应用于广阔领域的经验,并将帮助我们在这个领域内找到我们的途径。但是一般将不会知道适用的限度,至少不会完全知道。 即令我们认识到,一个概念的意义从来没有绝对准确地被规定过,某些概念仍然构成了科学方法的一个主要部分,因为它们暂时代表了过去(甚至是很遥远的过去)人类思维发展的最终结果;它们甚至是可以遗传的,并且无论如何,是从事现代科学工作的必不可少的工具。在这个意义上,它们在实用上可以是先天的。但是,关于它们的适用性的进一步限制可以在将来发现。 [book_title]第六章 量子论和自然科学其他部分的关系 前面已经说过,自然科学的概念有时在它们的联系方面可以严格地规定。在牛顿的《自然哲学的数学原理》(Princpia)中第一次认识了这种可能性,并且,正是由于这个理由,牛顿的工作对其后几个世纪整个自然科学的发展发生了巨大的影响。牛顿的《自然哲学的数学原理》一书从一组定义和公理开始,这些定义和公理是这样内在地联系在一起,以致它们构成了人们可称为“闭合系统”的一组东西。每一个概念能用一个数学符号表示,而不同概念之间的联系可以用数学符号的数学方程来表示。系统的数学映象保证系统中不出现矛盾。这样,物体在作用力的影响下可能产生的运动就由方程的可能解所表示。能够用一套数学方程表示的定义和公理系统,被看作是描述自然的永恒结构的系统,既与特殊的空间无关,也与特殊的时间无关。 系统中不同概念之间的联系是如此密切,以致人们一般不能改变任何一个概念而不破坏整个系统。 由于这个原因,牛顿的系统长时期以来被看作是最终的系统,而以后科学家的任务似乎仅仅是把牛顿力学推广到广阔范围的经验中去。实际上差不多有两个世纪,物理学正是沿着这些路线发展的。 从质点运动的理论出发,人们能够转向固体力学,转到旋转运动,并且还能够处理流体的连续运动或弹性体的振动。力学或者动力学的所有这些部分都密切结合着数学的进展,特别是微积分的进展,而逐渐地发展;它们的结果已为实验所检验。声学和水力学变成了力学的一部分。另一个明显地应用了牛顿力学的科学是天文学。教学方法的进步渐渐地引导到愈来愈准确地测定行星的运动和它们的相互作用。当发现电和磁的现象时,人们将电力和磁力同万有引力作了比较,它们对物体运动的作用仍然能够沿着牛顿力学的路线进行研究。最后,到十九世纪,在假设热实际上是由物质的最小部分的复杂的统计运动所组成的之后,甚至热学也能归结为力学了。克劳修斯(Clausius)、吉布斯(Gibbs)和玻耳兹曼(Boltzman)将几率的数学理论的概念与牛顿力学的概念相结合,从而得以证明热学的基本定律能够解释为是从应用到非常复杂的力学系统的牛顿力学所推导出来的统计定律。 到此为止,牛顿力学所提出的纲领已经完全前后一致地实现了,并且导致对广阔范围的经验的了解。第一个困难发生于法拉第和麦克斯韦的工作中对电磁场所进行的讨论中。在牛顿力学中,万有引力被认为是已定的,而不是进一步理论研究的对象。然而,在法拉第和麦克斯韦的工作中,力场本身变成了研究对象脚理学家想知道这个力场怎样作为空间和时间的函数而变化。因此,他们尝试建立场的运动方程,而不是首先建立受场作用的物体的运动方程。这种变化使人们回到牛顿以前的许多科学家所持的一种观点。那时的人们看来一种作用从一个物体传递到另一个物体,似乎只有当两个物体相互接触时才有可能,例如通过碰撞或摩擦。牛顿引入了一个很新奇的假说,假设了一种发生超距作用的力。现在,在力场的理论中,人们可以回到老的观念,认为作用是从一点传递到一个邻近点的,只能用微分方程来描述力场的行为。这实际上证明是可能的,因此,由麦克斯韦方程所给出的电磁场的描述似乎是关于力的问题的一个令人满意的解。这里人们已经改变了牛顿力学的纲领。牛顿的公理和定义涉及到物体和它们的运动;而对于麦克斯韦,力场似乎应该具有和牛顿理论中的物体同样程度的实在性。这种观点当然不容易被接受并且为了避免实在概念中的这样一种改变,将电磁场和弹性形变场或应力场相比拟,将麦克斯韦理论的光波和弹性体中的声波相比拟,似乎是讲得通的。因此,许多物理学家相信麦克斯韦方程实际上和一种弹性媒质的形变有关,他们把这种煤质称为以太;其所以给予这个名称,仅仅是为了表明这种媒质是如此之轻和稀薄,以致于它能穿过其他物质而不能被看到或感觉到。然而,这种解释是不太令人满意的,因为它不能解释为什么没有任何纵光波出现。 最后,将在下章讨论的相对论结论性地表明。与麦克斯韦方程有关的作为一种实体的以太概念,必须放弃。全部论证不能在这里讨论,但其结果是必须认为场是一种独立的实在。 狭义相对论的进一步的并更令人吃惊的结果是空间和时间的新性质的发现,实际上是空间和时间之间的联系的新性质的发现,这种性质在以前是不知道的,也是牛顿力学中所没有的。 在这种全新形势的影响下,许多物理学家得出了下面的多少有点轻率的结论:牛顿力学已经最终地被否定了。原始的实在是场而不是物体,而空间和时间的结构是由洛伦兹(Lorentz)和爱因斯坦的公式正确地描述的,而不是由牛顿的公理描述的。牛顿力学在许多情况下是一个很好的近似,但现在必须改进它,才能给出对自然的更为严格的描述。 根据我们最后在量子论中形成的观点,这样一种陈述似乎是对实际情况的一种很蹩脚的描述。第一,它忽略了这个事实,就是大部分用来测量场的实验都是以牛顿力学为基础的,第二,牛顿力学是不能改进的,它只能由某些本质上不同的东西来代替。 量子论的发展教导我们,人们宁可用下达词句来描述上述的情况:凡是能用牛顿力学概念来描述自然事件的地方,牛顿所建立的定律都是严格正确的,并且是不能改进的。但是电磁现象不能用牛顿力学的概念作适当描述。由此可见,关干电磁场和光波的实验,连同田麦克斯韦、洛伦兹和爱因斯坦对它们所作的理论分析一起,导出了一个新的能用数学符号表示的定义、公理和概念的闭合系统,这个系统象牛顿力学系统一样是前后一贯的,但在本质上与牛顿力学不同。 由此可见,甚至同自牛顿以来的科学家的工作相伴随的那些希望也必须改变了。显然,科学中的进展不能老是通过用已知的自然律来解释新现象的办法来实现。在某些情况下,被观测到的新现象只能用新概念来理解,采用这些新概念来解释新现象就象用牛顿的概念来解释力学事件一般。这些新概念又能联结成一个闭合系统,并可用数学符号表示。但是,如果物理学,或者更一般地讲,自然科学沿着这条道路前进的话,问题就发生了:不同的概念集之间的关系是什么,例如,如果在不同的概念集之中出现了同样的概念和词,但它们在它们的联系和数学表示方面却有不同的定义,那么,这些概念是在什么意义上代表实在的呢? 当狭义相对论发现时,这个问题立刻产生了。空间和时间的概念既属于牛顿力学,也属于相对论。但是在牛顿力学中,空间和时间是彼此独立的;在相对论中,它们则由洛伦兹变换联系起来了。在这个特例中,人们能够证明,相对论的陈述在系统中全部速度都远小平光速的限度内是接近于牛顿的陈述的。从这里人们可以作出结论说,牛顿力学概念不能应用于出现了与光速相近的速度的事件。从这里人们终于发现了牛顿力学的一个本质界限,这不能从前后一贯的概念集中看出来,也不能仅仅从对力学系统的观测得出。 由此可见,两个不同的前后一贯的概念集之间的关系常常需要很细致的研究。在我们进入关于这种闭合的和首尾一贯的概念集的结构以及它们的可能关系的一般性讨论之前,我们将对长久以来就在物理学中规定了的那些概念集作一简要的描述。人们能够区别出四个已经定型的系统。 第一个概念集,即牛顿力学,已经讨论过。它适合于描述一切力学系统、流体运动和物体的弹性振动;它包含了声学、静力学和空气动力学。 第二个闭合的概念系统是在十九世纪联系着热学的发展过程而形成的。虽然热学能够通过统计力学的发展最终与力学联系起来,但把它就当作力学的一个部分还是不现实的。实际上,热的现象学理论使用了许多概念,它们在物理学的其他部门中没有对应的东西,例如:热、比热、熵、自由能,等等。如果人们从这种现象学描述转到统计解释,把热看作能量,根据物质的原子结构,统计地分布在许多自由度之中,那么,热学与力学的联系就不见得比与电动力学或其他物理学部门的联系来得多。这种解释的中心概念是与现象学理论中熵的概念密切联系的几率概念。除此以外,热的统计理论还需要能量的概念。但是物理学中公理和概念的任何首尾一贯的集必须包合能量、动量和角动量以及这些量在某些条件下守恒的定律。如果首尾一贯的概念集预定要描述在任何时候、任何地点都是正确的某种自然特征Z换句话说,如果这些特征不依赖于时间和空间;或者用数学家的说法,如果在空间和时间的任何平移中,在空间的转动中,在伽利略-或洛伦兹-变换中,这些特征都是不变的,那么,这就可以成立。因此,热学能够和任何其他闭合的概念集相结合。 第三个概念与公理的闭合集起源于电和磁的现象,并在二十世纪的头十年通过洛伦兹、爱因斯坦、闵可夫斯基(Minkowski)的工作而达到它的最终形式。它包含了电动力学、狭义相对论、光学、磁学,并且人们还可以把各种不同的基本粒子的物质波的德波罗意理论也包括在内,但是不包括薛定谔的波动理论。 最后,第四个首尾一贯的概念集主要是头两章所描述的量子论。它的中心概念是几率函数,或者如数学家所称呼它的“统计矩阵”。它包括量子力学和波动力学.原子光谱理论、化学、物质的其他性质如电导性、铁磁性等等的理论。 这四个概念集之间的关系能用下列方式表明:第一概念集可以被包含在第三概念集内,作为光速可被当作无限大的一种极限情形;第一概念集也可以被包含在第四概念集内,作为普朗克作用常数可被当作无限小的一种极限情形。第一概念集和部分第三概念集属于第四概念集,它们对于实验描述是先验的。第二概念集能毫无困难地和其他三个概念集的任一个相联系,而特别重要的是它与第四概念集的联系。第三概念集和第四概念集的独支存在预示了第五概念集的存在,相对于它,第一、三、四概念集都是极限情形。这第五概念集或许在不久的将来就能够联系着基本粒子理论而被发现。 我们在上面列举的概念集中忽略了与广义相对论相联系的概念集,因为这个概念集或许尚未达到它的最终形式。但是应当着重指出,它和其他四个概念集是迥然不同的。 在这样简短的考察之后,我们可以回到一个更一般的问题:人们应当把什么当作这种公理和定义的闭合系统的特征呢?或许最重要的特征是找到它的前后一致的数学表示的可能性。这种表示必须保证系统不自相矛盾。其次,系统还必须适合于描述广阔领域的经验。在这个领域内多种多样的现象应当对应于数学表示中一些方程的许多个解。领域的限制一般不能从概念导出。概念在它和自然的关系方面,不是严格地规定了的,虽然严格地规定了它们之间的可能联系。因此,限制将从经验找出,从概念不容许对被观测的现象作完全的描述这一事实找出。 在对这个现代物理学结构作简要分析之后,物理学和自然科学的其他部门的关系也可以讨论了。物理学最近的相邻学科是化学。实际上,通过量子论这两门科学已经完全融合了。但在一百年前,它们隔离得很远,那时它们的研究方法完全不同,那时的化学概念在物理学中没有对应的概念。价、活性、溶解度和挥发性这一类概念具有比较定性的特征,因而化学很难算是精密科学。当上世纪中叶热学发展起来以后,科学家开始将它应用于化学过程,并且自那时起,这个领域的科学工作一直为把化学定律归结为原子力学的希望所决定。应当强调指出,无论如何,这在牛顿力学的框架中是不可能办到的。为了作出化学定律的定量描述,人们必须为原子物理学建立一个更广泛的概念系统。这终于在量子论中办到了,它在化学中有其泉源就同在原子物理学中一样。因而很容易看出,化学不能归结为原子粒子的牛顿力学,因为化学元素在它们的行为中显示出来的稳定性程度在力学系统中是完全没有的。但是一直到1913年玻尔的原子理论建立以后,才清楚地了解了这一点。最后,人们可以说,化学概念是部分地互补于力学概念。如果我们知道一个原子处于决定它的化学性质的最低的定态中,我们就不能同时谈论电子在原子中的运动。 [book_title]第七章 相对论 在现代物理学的领域中,相对论一直起着很重要的作用。在这个理论中第一次认识到改变物理学中基本原理的必要。因此,对于相对论所提出并由它部分解决的那些问题的讨论,实质上属于我们对现代物理学的哲学涵意的探讨。在某种意义上可以这样说——与量子论相反——从最终认识解决那些问题的困难到相对论的建立只花费了很短一段时间。莫雷(Morley)和密勒(Miller)在19O4年对迈克耳孙(Michelson〕实验的重复,第一次确定地证明了不能用光学方法检测地球的平移运动,而爱因斯坦的决定性论文在其后不到两年时间就发表了。在另一方面,莫雷和密勒的实验和爱因斯坦的论文只是很久以来就开始的发展中的最后几步,而这方面的发展可以用“运动体的电动力学”这个标题概括起来。 显然,自从电动机发明以来,运动物体的电动力学已经是物理学与工程学中的一个重要领域了。然而,麦克斯韦时光波的电磁本性的发现,给这个课题带来了严重的困难。这些波在一个主要特征主与别的波(例如声波〕不同:它们能在似乎是虚空的地方传播。当在抽空了空气的容器中打铃时,声音不能传播到容器外面。但光却很容易穿过抽空了的空间。因此,人们假设,可以把光波看作是一种叫做以大的很轻的实体的弹性波,以大这种东西既看不到,也感觉不出来,但却充满于抽空的空间和存在着别的物质(例如空气或玻璃〕的空间之中。关于电磁波本身可以是一种与任何物体无关的实在这种观念,当时的物理学家是没有想到的。既然以太这种假想实体似乎穿过了其他物质,就产生了这样的问题:当那些物质运动时,将发生什么,以太参与这种运动吗?如果参与的话,光波在运动的以太中是怎样传播的呢, 有关这个问题的实验由干下述理由而显得困难:运动物体的速度常常比光速小得多。因此,这些物体的运动只能产生很小的效应,这些效应同物体的速度与光速的比率成正比,或者同这个比率的更高次慕成正比。威耳孙(Wilson)、劳兰(Rowland)、伦琴(Roentgen)和爱欣瓦尔德(Eichenwald)以及斐索(Fizeau)所作的几个实验,能以相当于这个比率的一次幂的准确度测量出这些效应。1895年洛伦兹发展起来的电子理论能够十分令人满意地描述这些效应。但是,以后迈克耳孙、莫雷和密勒的实验开创了新的形势。 对这个实验应该作比较详细的讨论。为了得到较大的效应,从而得到更准确的结果,看来最好用很高速度的物体来做实验。地球以大约2O英里/秒的速度绕太阳运动。如果以太相对于太阳是静止的,并且也不随地球运动,那么,以太相对于地球的这种快速运动,将使它本身在光速的变化中被觉察出来。这时光的速度将因光是沿平行于还是垂直干以太的运动方向的方向传播而有所不同。即令有部分以太随地球运动,也应当有人们称为以大风的某种效应,而且这种效应大概与进行实验的地点的海拔高度有关。对预期的效应的计算表明,它应当是很小的,因为它同地球速度与光速的比率的平方成正比,因此人们必须从事非常精密的关于两条平行干或垂直于地球运动的光线的干涉的实验。这种类型的第一个实验,由迈克耳孙在1881年完成,但还不够准确。但是即使在以后几次重复这个实验,也没有些微征兆显示存在着预期的效应。特别是莫雷和赛勒在19O4年的实验可以看作是预期数量级的效应并不存在的确定的证明。 这个结果,虽然是很奇怪的,却与物理学家在以前曾经讨论过的另一个观点不期而合。在牛顿力学中成立的某种“相对性原理”可以描述如下:如果在某个参考系中物体的运动满足牛顿力学定律,那么在相对于这第一个参考系作匀速非转动运动的任何其他参考构架中,物体的运动也满足牛顿力学定律。或者换句话说,一个系统的匀速平移运动,归根到底并不产生任何力学效应,因而也不能通过这样的效应来观测。 这样一个相对性原理在光学和电动力学中可能不是正确的——在当时物理学家看来似乎是这样。如果第一个系统相对于以太是静止的,其他系统就不是静止的了,因此,它们相对于以太的运动应当通过迈克耳孙所考察的那一类效应被觉察出来。莫雷和密勒在1904年所作实验的否定结果真活了这种观念,即这样的相对性原理在电动力学中也是成立的,就象在牛顿力学中一样。 另一方面,斐索在1851年所作的一个古老实验似乎肯定地和相对性原理相矛盾。斐索测量了运动液体中的光速。如果相对性原理是正确的,那么,光在运动液体中的合速度应当是液体速度和静止液体中的光速之和。但事实不是这样,斐索的实验表明,合速度还要稍为小一些。 所有想觉察“相对于以太”的运动的更新的实验的仍然得出否定的结果这一点,启示了当时的理论物理学家和数学家去寻找使光的传播的波动方程与相对性原理相协调的数学解释。洛伦兹在19O4年建议了满足这些要求的数学变换。他曾不得不引入一个假说:运动物体在运动方向收缩了,其收缩程度与物体速度有关,并且在不同的参照方案中有不同的“表观”时间,它们在许多方面代替了“真实”时间。用这种方法,他能够表示某些类似于相对性原理的东西:光的“表观”速度在每个参照系中都是一样的。彭加勒(Poincare)、裴兹杰惹(Fitzgerald)和其他物理学家也曾探讨了类似的观念。 然而决定性的步骤是爱因斯坦在1905年的论文中作出的,他在论文中认定洛伦兹变换中的“表现”时间为“真实”时间,并废除了洛伦兹所谓的“真实”时间。这是物理学本身基础的一个改变;一个未曾预料到的并且是非常根本性的改变,这种改变需要一个年轻的革命天才的全部勇气。人们要在自然的数学表示中采取这一步骤,只需要前后一致地应用洛伦兹变换就够了。但是由于它的新解释,空间和时间的结构改变了,对于物理学的许多问题就有了新的见解。例如,实体以太也可以废除了。既然所有彼此相对作匀速平移运动的参照系对于自然的描述都是等价的,说有这样一种实体以太,它仅仅在这些参照系当中的一个参照系内才是静止的,那是没有什么意义的。这样一种实体事实上是不需要的,说光波在空虚的空间中传播,而电磁场本身是一种实在,能够在空虚的空间中存在,那就要简单得多了。 但是,决定性的变化是在时间和空间的结构方面。很难不用数学而只用普通语言来描述这种变化,因为通常“空间”和“时间”这两个词所表述的时间和空间结构,实际上是真实结构的一种理想化和过分的简化。但我们还必须尝试描述这种新结构,或许我们可用下面的方式来做到这一点。 当我们用“过去”一词时,我们包含了全部我们至少在原则上可以知道的和我们至少在原则上能够听别人说到的那些事件。类似地,我们用“未来”一词,包含了全部我们至少在原则上能够给予影响的、我们至少在原则上可以试图去改变或阻止的那些事件。一个非物理学家不容易理解,为什么“过去”和“未来”二词的这种定义是最为适用的。但是人们容易看出,边种定义很准确地符合于这两个词的日常用法。如果我们以这种方式使用这两个词,那么,从许多实验的结果我们知道,“未来”或“过去”的涵义并不依赖于观测者的运动状态或其他性质。我们可以说,它们的定义对于观察者的运动是不变的。这在牛顿力学中和爱因斯坦的相对论中都是正确的。 但是,这里有一个差别:在经典理论中,我们假设未来和过去是由一个我们可以称为现在的无限短的时间间隔所隔开的。在相对论中,我们已经知道情况是不同的:未来和过去是由一个有限的时间间隔所隔开的,这个时间间隔的长短与距观察者的距离有关。任何作用只能以小于光速或等于光速的速度传播。因此,一个观察者在一个结定瞬间可以既不知道也不影响到远处一点上在两个特定时刻之间发生的任何事件。其中一个时刻是为了使光信号在观察者观察的瞬间到达观察者处而必须从事件发生的地点发出光信号的那个瞬间。另一个时刻是观察者在观察瞬间发出的光信号到达事件发生地点的瞬间。这两个瞬间之间的整个有限的时间间隔对于观察者说来都可以说是属于观察瞬间的“现在”。任何发生于这两个特定时刻之间的事件都可以说与观察动作是“同时”的。 用“可以说是”这种说法,表明了“同时”一词的意义含糊不清,这是由于“同时”这个词是从日常生活经验中形成的,而在日常生活中光速总可以当作是无限大的。实际上这个词在物理学中也能以稍稍不同的方式来定义,而且爱因斯坦在他的论文中也使用了这第二种定义。当两个事件在空间中同一点上同时发生,我们说它们重合,这个词是毫无歧义的。现在让我们设想空间中一条直线上有三个点,中间一点到两旁两个点的距离是相等的。如果在外面两点有两个事件发生于这样的时刻,使得从这两个事件发出的光信号到达中间点时相重合,那么,我们可以定义这两个事件是同时的。这个定义比第一个定义要狭窄一些。它最重要的后果之一是当两个事件对一个观察者是同时的,它们对另一个观察者可以不是同时的,如果他对第一个观察者作相对运动的话。两个定义之间的联系可用下面的陈述确定下来:如果两个事件在第一种意义上是同时的,那么,人们总可以找到一个参照构架,使得这两个事件在这个参照构架中,在第二种意义上也是同时的。 “同时”这个词的第一个定义似乎更接近于日常生活的用法,因为两个事件是否同时的问题在日常生活中并不依赖于参照构架。但是在两个相对论性的定义中,这个词已经获得了日常生活语言所缺乏的严密性。在量子论中,物理学家必定早已就懂得经典物理学术语只能不准确地描述自然,它们的使用变量子定律的限制,因而人们在使用它们时应当小心。在相对论中,物理学家曾经试图改变经典物理学中词的涵义,使得那些术语更为准确,使它们能符合于自然中的新状况。 由相对论所揭示的空间和时间结构给物理学的各个部门带来许多后果。运动物体的电动力学能立即从相对性原理导出。这个原理本身能够构成一个十分普遍的自然律,它不只涉及电动力学成力学,而是涉及任何一类定律:在一切仅因彼此相对作匀速平移运动而有所不同的参照系中,这些定律都取同样的形式;它们对于洛伦兹变换是不变的。 或许相对性原理的最重要后果是能量的惯性,也就是质量和能量的等价性。因为光速是任何物体永不能达到的极限速度,不难看出,要加速一个已经很快地运动着的物体比加速一个静止物体更困难。惯性随动能的增加而增加了。但是,按照相对论,任何一种能量都将毫无例外地对惯性作出贡献,也就是对质量作出贡献,而属于一定量能量的质量正是这个能量除以光速的平方。由此可见,每一种能量都带有质量;但即令是颇大的能量也只带有很小的一份质量,这正是以前未曾发现质量和能量之间有联系的原因。质量守恒律和能量守恒律失去了它们的单独的有效性,两者结合成为一个单一的定律,它可以称为能量也就是质量守恒律。五十年前,当相对论刚刚建立时,质量和能量等价性这个假说似乎是物理学中的彻底革命,但关于这个假说只有很少的实验证据。在现在,我们在许多实验中看到基本粒子能够怎样地从动能产生,以及这些粒子如何湮灭而成为辐射;因此,能量转换为质量和质量转换为能量并未提出什么不寻常的东西。原子爆炸中能量的大量释放是爱因斯坦方程的正确性的另一个更为惊人的证明。但我们可以在这里补充一点批判性的历史评论。 时常有人说,原子爆炸的巨大能量是由于质量直接转化为能量,并且只有根据相对论,人们才能预计这些能量。然而,这是一种误解。原子核中可利用的巨大能量早在贝克勒耳、居里和卢瑟福的放射性衰变的实验中就已经知道了。任何象镭一样的衰变物质产生的热量差不多比同等数量的质料在化学变化过程中释放的热量大一百万倍。铀的裂变过程中的能源正好和镭的alpha衰变中的能源相同,就是说,主要是原子核分裂而成的两部分之间的静电斥力。因此,原子爆炸的能量是直接出自这个来源,而不是从质量转换为能量得到的。具有有限的静止质量的基本粒子的数目在爆炸中并未减少。但是,原子核中基本粒子的结合能确实在它们的质量上反映出来,因而能量的释放也以这种间接的方式和原子核质量的变化相联系。质量和能量的等价性,除了它在物理学中的重要性外,也提出了一些涉及非常古老的哲学问题的问题。实体或物质不灭曾经是过去好几个哲学体系的命题。然而,在现代物理学中,许多实验已经证明,基本粒子,例如正电子和电子,能够湮灭并转变成为辐射。这是否意味着这些较古老的哲学体系已为现代经验所否定,而早期哲学体系所作的论证是误人的? 这当然是一个轻率和不公正的结论,因为在古代和中世纪时代的哲学中,“实体”和“物质”等词不能和现代物理学中的“质量”一词简单地等同起来。如果希望用古老的哲学语言来表示我们现代的经验,人们可以把质量和能量当作同一“实体”的两种不同的形式,从而保持实体不灭的观念。 另一方面,很难说用古老语言表达现代知识能有多少收获。过去的哲学体系是在它们那个时代全部有用知识的基础上形成的,是沿着得到这些知识的思想路线形成的。当然,我们不应当要求千百年前的哲学家预见到现代物理学或相对论的发展。因此,很久以前哲学家从智力探讨过程中所形成的概念可能不适合于那些只能用现代精密技术工具去观测的现象。 但在进入相对论的哲学涵义的讨论之前,必须先叙述它的进一步发展。 假想的实体“以太”,它在十九世纪麦克斯韦理论的早期讨论中曾经超过如此重要的作用,已经——如前所述——被相对论废除了。有时,这用绝对空间观念被放弃了的说法来表达。但是,这样一种陈述必须十分小心地来接受。确实,人们不能指出一个具体的参照系,其中的实体以太是静止的,因而它配得上绝对空间的称号。但如果说空间在现在已失去了它的全部物理性质,那就错了。物体或场的运动方程在“正常”参照系中所取的形式与在另一个相对于“正常”参照系旋转的或作非匀速运动的参照系中所取的形式仍然是不同的。在旋转系中离心力的存在证明了——仅就19O5和1906年的相对论而言——空间的物理性质的存在,这种性质使区别旋转系与非旋转系成为可能。 从哲学观点看来,这似乎不能令人满意,从哲学观点看来,人们宁愿将物理性质只附加在如物体或场这种物理实体上,而不附加在空虚的空间上。但就有关的电磁过程理论或机械运动而论,这种空虚空间的物理性质的存在不过是对一些不容争辩的事实的一种描述。 差不多十年以后,在1916年,对这种状况的仔细分析,引导爱因斯坦对相对论作了很重要的推广,这种推广通常称为“广义相对论”。在描述这种新理论的主要观念之前,稍稍谈一谈我们能够信赖相对论这两个部分的正确性的可靠程度会是有用的。1905和1906年的理论是以很大量充分确定的事实为根据的,这些事实是:迈克耳孙和莫雷实验以及许多类似的实验,无数放射过程中的质量和能量的等价性,放射性物体的寿命对它们的速度的依赖关系,等等。因此,这个理论是现代物理学的坚固基础,在我们目前情况下是不容争辩的。 对于广义相对论,实验证据就远远不能令人信服,因为实验材料十分稀少。只有少量的天文观测可以对假设的正确性进行检验。因此,这整个广义相对论比起狭义相对论来,就具有更大的假说性了。 广义相对论的基石是惯性和引力之间的联系、非常仔细的测量已经证明,作为引力的来源的物体质量准确地正比于作为物体惯性的度量的质量。即使最准确的测量也从未显示过对这个定律的任何偏离。如果这个定律是普遍地正确的,那么,可以把引力等价于离心力或其他因惯性反应而出现的力。因为如前面所述,必须把离心力归因于空虚空间的物理性质,爱因斯坦就转向把引力也归因于空虚空间的物理性质的假说。这是很重要的一个步骤,它对同样重要的、接踵而至的第二个步骤是必需的。我们知道,引力是由质量所引起。如果引力是和空间的性质相联系的,那么,这些空间性质就必须是由质量所引起或受它的影响的。旋转系中的离心力必定是由大概是很远的质量(相对于这个系统〕的旋转所引起。 为了实现以这寥寥数语概括出来的纲领,爱因斯坦必须把基本的物理观念和黎曼(Riemann)所建立的一般几何学的数学方案联系起来。因为空间的性质似乎连续地随引力场而变化,它的几何学就必须与曲面几何学相类似,此时,欧几里得几何学的直线必须被最短程线、即最短距离的线所代替,同时,曲率是连续地变化的。作为最后的结果,爱因斯坦能够给出质量分布与几何学的决定性参数间的联系的教学形式系统。这个理论确实表示出关于引力的常见事实。它在很高的近似程度上等价于引力的传统理论,并且还进一步预言了少数有趣的、正好处于可测量的极限的效应。例如,引力对光的作用。当单色光从一个很重的恒星发出时,光量子在离开恒星的引力场时会损失一些能量。从而发生了发射谱线的红移。关于这样的红移目前尚没有实验的证明,弗罗恩特利希(Freundlich)对实验所作的讨论清楚地表明了这一点。但就此作出爱因斯坦的结论与实验相矛盾的结论也为时过早。经过太阳附近的光束应当为太阳的引力场所偏转。弗罗恩特利希已从实验发现了适当数量级的偏转;但这个偏转是否与爱因斯坦理论所预言的数值定量地符合,尚不能决定。广义相对论正确性的最好的证据,似乎是水星的轨道运动的进动,它显然很好地符合于这理论所预言的数值。 虽然广义相对论的实验基础还很狭小,但理论却包含了一些极为重要的思想。从古代希腊到十九世纪这整个时期内,数学家都认为欧几里得几何是显而易见的;欧几里得的公理被当作任何数学几何的基础,而且是一种不容争辩的基础。以后,在十九世纪,数学家波利亚(Bolyai)和洛巴切夫斯基(Lobachevsk)、高斯(Gauss)和黎曼发现,可以创建另外一些几何学,它们能象欧几里得几何学一样,以同样的数学严密性建立起来;因此,究竟哪一种几何学是正确的问题,就变成一个经验问题。但是,只有通过爱因斯坦的工作,问题才真正由物理学家承担起来。广义相对论中讨论的几何学不仅是关于三维空间,而是关于由时间和空间组成的四维簇的几何学。广义相对论建立了这种四维簇的几何学和宇宙中质量分布的关系。因此,这个理论以全新的形式提出了时间和空间在最大尺度上的性状这些老问题;它能够提出可通过观测来检验的可能答案。 因此,自从科学和哲学的最早时期就引人注意的一些很古老的哲学问题又被捡起来了。空间是有限的还是无限的?在时间开始之前有什么?在时间终了时又将发生什么,或者时间是无始无终的,这些问题在不同的哲学中和宗教中曾经找到不同的答案。譬如,在亚里士多德的哲学中,整个宇宙空间是有限的(虽然它是无限地可分的)。空间是起因于物体的广延,它与物体相联系;没有物体也就没有空间。宇宙由地球、太阳和星球所组成,即由有限个数的物体所组成。在星球范围之外没有空间;因此,宇宙空间是有限的。 在康德哲学中,这个问题属于他称为“二律背反”的问题——即不能回答的问题,因为两种不同的论证可以导致相反的结果。空间不能是有限的,因为我们不能设想空间有一个边界;对于我们所到达的空间的任一点,我们总能够设想我们还能跨越过去。同时空间又不能是无限的,因为空间是我们能够设想的东西(否则“空间”一词就不会形成),而我们不能设想一个无限的空间。关于这第二个命题,这里没有逐字逐句地重复康德的论证。“空间是无限的”这句话对于我们意味着某些否定性的东西;即我们不能到达空间的终点。对于康德来说,这意味着空间的无限性确实是规定了的,这无限性在我们很难再现的意义上“存在”着。康德的结论是:对于空间是有限还是无限这个问题,不能给出合理的答案,因为整个宇宙不能成为我们的经验的对象。 关于时间的无限性问题,可以看到类似的情况。例如,在圣奥古斯丁(St.Angustine)的《忏悔录》(Confessions)中,这个问题取如下的形式:在上帝创造世界之前,他在干些什么,奥古斯丁不满足于这种玩笑:“上帝在忙于为那些提傻问题的人准备地狱呢。”他说,这样一种回答太浅薄了。他试图对这个问题作一合理的分析。时间仅仅对于我们是在不断地消逝;我们所期待的时间是“未来”;正在过去的时间是“现在”,我们所回忆的时间是“过去”。但上帝不在时间之中,对于上帝,千年如一日,一日犹千年。时间是和世界一同被创造出来的,它属于世界,因此时间并不在宇宙存在之前存在。对于上帝,整个宇宙过程是一次给定的。在他创造世界之前没有时间。显然,在这样的陈述中,“创造”一词立刻引起了全部主要的困难。这个词,如通常所理解,意味着某些过去没有的东西产生了,而在这个意义上,它预先假设了时间的概念。因此,不能用合理的术语规定“时间已被创造出来”一句话的意义是什么。这个事实又提醒我们从现代物理学中学到的一个时常讨论的教训,它就是:每一个词或概念,尽管它可能看来很清楚,也只能在有限范围内适用。 在广义相对论中,关于时间与空间的无限性这些问题,能够在经验基础上提出问题并作部分回答。如果理论正确地给出了时间空间四维几何学与质量在宇宙中分布之间的联系,那么,对空间中星系分布的天文观测将给予我们关于整个宇宙的几何学的信息。至少人们能够建立宇宙的“模型”,即建立宇宙学图象,它的结论能够同经验事实相比较。 根据现有的天文学知识,不能肯定地在几种可能的模型之间作出判别。宇宙所充塞的空间也许是有限的。这并不意味着宇宙在某个地方有一个尽头。它可能只是意味着朝着宇宙的一个方向前进又前进,人们最后将回到他们出发的地点。这种状况类似于地球表面的二维几何学,在地球上,当我们从一点向东方出发,最后将从西方回到这一点。 对于时间,似乎有某种类似于起点的东西。许多观测指出宇宙起源于大约四十亿年前;至少它们似乎证明在那时,宇宙的全部物质集中于较现在小得多的空间之内,并且一直以不同的速度从这个小空间向外膨胀。从许多不同的观测(例如,从陨石的年龄、地球上矿物的年龄等等〕,发现了同样的四十亿年,因此,很难找到一个本质上不同于宇宙有一个起源这种观念的解释。如果它是正确的,就可能意味着在这个时间之外时间的概念将遭受根本的变化。在天文观测目前的状况下,关于大尺度的时间空间几何学的问题还不能作任何程度的确定的回答。但想到对这些问题最终可能在坚实的经验基础上作出回答,那是极为有趣的。当 ✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜未完待续>>>完整版请登录大玄妙门网✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜