[book_name]科学与假设 [book_author]彭加勒 [book_date]不详 [book_copyright]玄之又玄 謂之大玄=學海無涯君是岸=書山絕頂吾为峰=大玄古籍書店獨家出版 [book_type]外国名著,完结 [book_length]110792 [book_dec]法国马赫主义者彭加勒的著作。1902年出版。全书除导言外,共分四部分14章。第一部分论“数与量”,包括第一章数学推理的性质,第2章数学量与实验;第二部分论“空间”,包括第3章非欧几里得几何学,第4章空间与几何,第5章经验与几何;第三部分论“力”,包括第6章经典力学,第7章相对运动与绝对运动,第8章能与热力学;第四部分论“自然界”,包括第9章物理学中的假设,第10章近代物理学之理论,第11章概率计算,第12章光学与电学,第13章电动力学,第14章物质的究竟。 在这部著作中,彭加勒从算术和几何学,力学和实验物理学等科学,来论证公约、假设以及感觉关系是衡量科学客观性的标准。在导言中说,假设在科学中占有重要位置,在数学及其相关的科学中,所谓假设就是指公约和定义。 彭加勒说,数和量并非存在于自然界中,它们是我们首创的;几何学的基本原理不是来自经验,而是一种公约;力学虽然比较直接依赖于经验,但还含有几何公设的公约性;物理学虽然同以上各门科学不同,但同样是假设在起作用。在这里彭加勒谈到概率计算,说明“在许多情况中,物理学家的地位有如赌博者,只盼望幸运”,就是说,“一切预见的事实只是大概的。一种预见无论如何稳固,我们决不能绝对确信它不致被实验所推翻”。而概率计算之有意义,在于它承认以一种假设或是常常略含任意性的公约为起点。 [book_img]Z_10456.jpg [book_chapter]序 [book_title]引言 对于一个浅薄的观察者来说,科学的真理是无可怀疑的;科学的逻辑是确实可靠的,如果科学家有时犯错误,那只是由于他们弄错了科学规则。 “数学的真理是用一连串无懈可击的推理从少数自明的命题推演出来的;这些真理不仅把它们自己强加于我们,而且强加于自然本身。可以说,它们束缚着造物主,只容许他在比较少的几个答案中选择。因此,为数不多的实验将足以使我们知道他做出什么选择。从每一个实验,通过一系列的数学演绎,便可得出许多推论,于是每一个实验将使我们了解宇宙之一隅。” 看啊,对于世界上的许多人来说,对于获得第一批物理学概念的学生来说,科学确实性的来源是什么。这就是他们所猜想的实验和数学的作用。100年前,许多学者就持有同样的想法,他们梦想尽可能减少实验来构造世界。 人们略加思索,便可以察觉假设占据着多重大的地位;数学家没有它便不能工作,更不必说实验家了。于是人们怀疑所有这些建筑物是否真正牢固,并认为吹一口气会使之倾倒。以这样的方式怀疑还是浅薄的。怀疑一切和相信一切二者同样是方便的解决办法;每一个都使我们不用思考。 因此不要对假设简单地加以责难,我们应当仔细地审查假设的作用;于是,我们将认识到,不仅假设是必要的,而且它通常也是合理的。我们也将看到,存在几类假设;一些是可证实的,它们一旦被实验确认就变成富有成效的真理;另一些无能力把我们导入歧途,它们对于坚定我们的观念可能是有用的;最后,其余的只是外观看来是假设,它们能还原为隐蔽的定义或约定。 最后这些假设尤其在数学和相关的科学中遇到。这些科学正是由此获得了它们的严格性;这些约定是我们心智自由活动的产物,我们的心智在这个领域内自认是无障碍的。在这里,我们的心智能够确认,因为它能颁布法令;然而,我们要理解,尽管把这些法令强加于我们的科学——没有它们便不可能有科学,但并没有把它们强加于自然界。可是,它们是任意的吗?不,否则它们将毫无结果了。实验虽然把选择的自由遗赠给我们,但又通过帮助我们辨明最方便的路径而指导我们。因此,我们的法令如同一位专制而聪明的君主的法令,他要咨询国家的顾问委员会才颁布法令。 一些人受到某些科学基本原理中可辨认的自由约定的特点的冲击。他们想过度地加以概括,同时,他们忘掉了自由并非放荡不羁。他们由此走到了所谓的唯名论,他们自问道:学者是否为他本人的定义所愚弄,他所思考、他所发现的世界是否只是他本人的任性所创造。 [1] 在这些条件下,科学也许是确定的,但却丧失了意义。 假若如此,科学便无能为力了。现在,我们每天看到它正是在我们的眼皮底下起作用。如果它不能告诉我们实在的东西,情况就不会这样。可是,它能够达到的并不是像朴素的教条主义者所设想的事物本身,而只是事物之间的关系。在这些关系之外,不存在可知的实在。 这就是我们将要得出的结论,为此我们必须考察一系列学科——从算术和几何学到力学和实验物理学。 数学推理的本性是什么?它像通常想象的那样果真是演绎的吗?更进一步的分析向我们表明,情况并非如此,它在某种程度上带有归纳推理的性质,正因为这样它才如此富有成效。它还是保持它的绝对严格的特征;这是首先必须指明的。 由于更充分了解数学交给研究者手中的一种工具,我们再来分析另一个基本概念,即数学量概念。我们是在自然界中发现它的呢,还是我们自己把它引入自然界的呢?而且,在后一种情况下,我们不会冒把每一事物密切结合起来的风险吗?把我们感觉到的未加工的材料和数学家称之为数学量的极其复杂、极其微妙概念比较一下,我们便不得不承认一种差别;我们希望把每一事物强行纳入的框架原来是我们自己构造的;但是我们并不是随意制作它的。可以说,我们是按尺寸制造的,因此我们能够使事实适应它,而不改变事实中的本质性的东西。 我们强加给世界的另一个框架是空间。几何学的头一批原理从何而来?它们是通过逻辑强加给我们的吗?罗巴契夫斯基(Lobachevski)通过创立非欧几何学证明不是这样。空间是由我们的感官揭示给我们的吗?也不是,因为我们的感官能够向我们表明的空间绝对不同于几何学家的空间。几何学来源于经验吗?进一步的讨论将向我们表明情况并非如此。因此,我们得出结论说,几何学的头一批原理只不过是约定而已;但是,这些约定不是任意的,如果迁移到另一个世界(我称其为非欧世界,而且我试图想象它),那我们就会被导致采用其他约定了。 在力学中,会导致我们得出类似的结论,我们能够看到,这门科学的原理尽管比较直接地以实验为基础,可是依然带有几何学公设的约定特征。迄今还是唯名论获胜;但现在我们看看严格称谓的物理科学。在这里,舞台发生了变化;我们遇到了另一类假设,我们看到它们是富有成效的。毫无疑问,乍看起来,理论对我们来说似乎是脆弱的,而且科学史向我们证明,它们是多么短命;可是它们也不会完全消灭,它们每一个总要留下某种东西。正是这种东西,我们必须设法加以清理,因为在那里,而且唯有在那里,才存在着真正的实在。 物理科学的方法建立在归纳的基础上,当一种现象初次发生的境况复现时,归纳法使我们预期这种现象会重复。一旦所有这些境况能够同时复现,那就可以毫无顾忌地应用这个原理;但是,这是从来没有发生过的;其中有些境况总是缺少的。我们可以绝对确信它们不重要吗?显然不能。那也许是概然的,但不会是严格确定的。由此可见概率概念在物理科学中起着多么重要的作用。因而,概率计算不仅仅是玩纸牌人的娱乐或向导,我们必须深究其基本原理。在这方面,我只能给出很不完善的结果,因为这种使我们辨别概率的模糊的本能太难加以分析了。 在研究了物理学家工作的条件之后,我想向他有效地展示一下是适当的。为此,我举出了光学史和电学史中的例子。我们将看到,菲涅耳(Fresnel)的观念、麦克斯韦(Maxwell)的观念从何而来,安培(Ampère)和电动力学的其他奠基者都作了哪些无意识的假设。 * * * [1] 参见勒卢阿:“科学和哲学”,《形而上学和道德评论》,1901年。(Le Roy,“Science et Philosophie”,Revue de Métaphysique et de Morale,1901.) [book_chapter]第一编 数与量 [book_title]第一章 数学推理的本性 Ⅰ 数学科学的可能性本身似乎是一个不可解决的矛盾。如果这门科学只是在外观上看来是演绎的,那么没有人想去怀疑的、完美的严格性从何而来呢?相反地,如果数学所阐明的一切命题能够依据形式逻辑的规则相互演绎,那么它为什么没有变成庞大的同义反复呢?三段论法不能告诉我们本质上新颖的东西,假使每一事物都来自同一律,那么每一事物都必定能归入其中。这样一来,我们难道将要承认,所有那些充斥许多书中的定理的阐明无非是A即A的转弯抹角的说法? 毋庸置疑,我们能够返回到公理,它们处在所有这些推理的源头。如果我们断定这些推理不能划归为矛盾律,如果我们在其中甚至看到了不具有数学必然性的经验事实,那么我们还有把它们列入先验综合判断的对策。这不是解决困难,而只不过是使之洗炼而已;即使综合判断的本性在我们看来并不神秘,然而矛盾还不会消失,它只是后退了;三段论推理依然不能为给予它的材料添加任何东西;这些材料本身划归为几个公理,我们在结论中不会发现其他东西。 无论什么定理,如果没有新公理参与它的证明,它就不会是新的;推理只能借用直接的直觉给我们以即时自明的真理;它恐怕只是中间的寄生物,因此我们难道没有充分的理由去询问,整个三段论工具是否只是有助于掩饰我们的借用? 翻开任何一本数学书,这种矛盾将会给我们以更大的冲击;在每一页上,作者都要阐述他概括一些已知的命题的意图。数学方法是从特殊行进到一般吗?假若如此,为何又能把它称为演绎的呢? 最后,如果数学是纯粹分析的,或者它能够从少数综合判断通过分析导出,那么博大精深的心智似乎一眼就能察觉它的所有真理;不仅如此,我们甚至可以希望,人们总有一天会发明一种足够简单的语言表达它们,使它们在通常的理智看来也是自明的。 如果我们不赞同这些结果,那就必须承认,数学推理本来就有一种创造能力,从而不同于三段论。 该差别甚至必须是深刻的。例如,按照某一法则,用于两个相等的数的同一个一致运算将给出恒等的结果,我们在频繁使用这一法则时找不出其中的奥秘。 所有这些推理方式,不管它们是否可划归为名副其实的三段论,它们依然保持着分析的特征,正因为如此,它们才是软弱无力的。 Ⅱ 这里要讨论的是老问题;莱布尼茨(Leibnitz)企图证明2加2得4;让我们看一下他的证明吧。 我将假定数1已被定义,又假定运算x+1意谓把单位1加在已知数x上。 这些定义不管是什么,它们都没有进入推理过程。 然后我通过等式 (1)1+1=2; (2)2+1=3; (3)3+1=4 定义数2,3和4。 用同样的方式,我通过下述关系定义运算x+2: (4)x+2=(x+1)+1。 由于预先假定了这一切,于是我们有 2+1+1=3+1 (定义2), 3+1=4 (定义3), 2+2= (2+1)+1 (定义4), 由此可得 2+2=4 证毕。 不能否认,这个推理是纯粹分析的。可是若问任何一个数学家:“这不是真正的证明(demonstration) ”,他将会对你说:“这是核验(verification) 。”我们仅限于比较两个纯粹约定的定义,并查明它们是恒等的;我们没有学到什么新东西。核验不同于真的证明,正因为它是纯粹分析的,正因为它是毫无结果的。其所以毫无结果,是因为结论不过是翻译成另一种语言的前提。相反地,真的证明是富有成效的,因为这里的结论在某种意义上比前提普遍。 等式2+2=4是如此易受核验,只因为它是特定的。数学中的每一个特定的阐述总是能够以这种相同的方式核验。但是,如果数学能够划归为一系列这样的核验,它就不会是科学了。例如,棋手并没有在赢棋中创立科学。离开普遍性便没有科学。 人们甚至可以说,精密科学的真正目的就在于使我们省却这些直接的核验。 Ⅲ 因此,让我们看看几何学家是如何工作的,并且力图把握他的工作过程。 这项任务并非没有困难;随便翻开一本书,并分析其中的任何证明,这是不够的。 我们首先必须撇开几何学,由于与公设的作用、空间概念的本性和起源有关的问题相当困难,因而几何学中的疑问是错综复杂的。出于类似的理由,我们也不能转向微积分。我们必须寻找其中依然是纯粹的数学思想,也就是说,必须在算术中去寻找。 选择还是必要的;在数论的比较高深的部分,原始数学概念已经经受了如此深刻的提炼,以至于变得难以分析它们。 因此,正是在算术的开头,我们必须期待找到我们寻求的说明,但是恰恰是在最基本的定理的证明中,发生了这样的情况:经典论文的作者表现得最少精确、最少严格。我们不必把这作为一种罪过归咎于他们;他们服从了必要性;初学者没有受到真正的数学严格性的训练;他们在其中只能看到无用的、使人厌烦的微妙;企图使他们过早地变得更为精密,那不过是白费时间;他们必定会迅速地、但却是按部就班地通过的,而科学奠基人却是缓慢地越过这条道路的。 为了逐渐地习惯于这种完全的严格性——它似乎应该自然而然地施加在一切健全的心智之上,为什么要有如此长的必要的准备呢?这是一个逻辑的和心理的问题,完全值得加以研究。 但是,我们不去处理它;它不是我们的目的;我们必须重新证明最基本的定理,为了不使初学者烦恼,我们不是把这些定理留下的粗糙的形式给予他们,而是把训练有素的几何学家满意的形式给予他们。 加法的定义。我假定已经定义了运算x+1,即把数1加到已知数x上。 这个定义不管是什么,都没有进入我们的后继的推理之中。 我们现在要定义运算x+a,就是把数a加到已知数x上。 假定我们定义了运算 x+(a-1), 则运算x+a将用等式 x+a=[x+(a-1)]+1 (1) 来定义。 只有我们知道x+(a-1)是什么,然后我们才能知道x+a是什么,正如我假定过的,从我们知道x+1是什么开始,我们就能相继地“借助递归”定义运算x+2,x+3等等。 这个定义值得注意一下;它具有一种特殊的性质,这种性质已经把它与纯粹逻辑的定义区别开来;等式(1)包含着无穷个不同的定义,只要人们知道前者,每一个定义都有意义。 加法的特性——结合性。我说 a+(b+c)=(a+b)+c. 事实上,该定理对c=1而言为真;于是可写出 a+(b+1)=(a+b)+1, 该式除符号有差别外,无非是我刚才定义加法的(1)式。 假定该定理对c=γ而言为真,我说它对c=γ+1亦为真。 事实上,设 (a+b)+γ=a+(b+γ), 由此可得 [(a+b)+γ]+1=[a+(b+γ)]+1. 或者根据定义(1) (a+b)+(γ+1)=a+(b+γ+1)=a+[b+(γ+1)], 这表明,通过一连串的纯粹分析的演绎,该定理对γ+1为真。 由于对c=1为真,从而我们相继看到,它对c=2,c=3等也是如此。 交换性。1°我说 a+1=1+a. 该定理显然对a=1来说为真;我们能够用纯粹分析的推理来核验,若它对a=γ为真,则它对a=γ+1也为真;于是, (γ+1)+1=(1+γ)+1=1+(γ+1); 现在该定理对a=1为真,因而它对a=2,a=3等亦为真,这可用下述说法来表述:所阐述的命题通过递归而证明。 2°我说 a+b=b+a. 该定理刚才针对b=1已被证明;可以用分析来核验,若它对b=β为真,则它对b=β+1亦为真。 因此,该命题通过递归而成立。 乘法的定义。我们将用下述等式来定义乘法: a×1=a,(1) a×b=[a×(b-1)]+a.(2) 像等式(1)一样,等式(2)包含着无穷个定义;只要定义了a×1,就能使我们相继定义a×2,a×3等等。 乘法的特性——分配性。我说 (a+b)×c=(a ×c)+(b×c). 我们用分析核验,该等式对c=1而言为真;其次,若该定理对c=γ为真,则它对c=γ+1亦为真。 因此,该命题通过递归而证明。 交换性。1°我说 a×1=1×a. 该定理对a=1而言是显而易见的。 我们用分析验证,若该定理对a=a为真,则它对a=a+1亦为真。 2°我说 a×b=b×a. 该定理对于b=1而言刚刚证明过了。我们可以用分析核验,若它对b=β为真,则它对b=β+1亦为真。 Ⅳ 我在这里不再进行这种一连串单调的推理。但是,正是这种单调的东西,更清楚地把一致的、在每一步都要再次遇到的程序显示出来。 这种程序就是递归证明。我们首先针对n=1规定一个定理;然后我们证明,若该定理对n-1为真,则对n也为真,从而得出结论:它对所有的整数都为真。 我们刚才看到,如何可以用递归来证明加法法则和乘法法则,也就是代数计算法则;这种计算是变换的工具,它有助于形成更多的各种不同的组合,远非简单的三段论所能相比;但是,它依然是纯粹分析的工具,不能告诉我们任何新东西。如果数学没有其他工具,它就会因之即刻阻碍自己的发展;但是,它重新求助于同一程序,即求助于递归推理,从而它能够继续前进。 如果我们密切注视一下,我们在每一步都会再次遇到这种推理方式,它或者是以我们刚才给予它的简单形式出现的,或者是以或多或少修正了的形式出现的。 于是,我们在这里有了典型的数学推理,我们必须更为仔细地审查它。 Ⅴ 递归推理的主要特征是,它包括无穷个三段论,可以说它浓缩在单一的公式中。 为了更清楚地看到这一点,我想依次陈述这些三段论,如果你容许我形容一下的话,它们就好像“多级瀑布”一样直泻而下。 这些当然是假设的三段论。 定理对数1为真。 现在,若它对1为真,则它对2亦为真。 故它对2为真。 现在,若它对2为真,则它对3亦为真。 故它对3为真,如此等等。 我们看到,每一个三段论的结论都是下一个三段论的小前提。 而且,我们的所有三段论的大前提都能简化为单一的公式。 若定理对n-1为真,则它对n亦为真。 其次,我们看到,在递归推理中,我们仅限于陈述第一个三段论的小前提和把所有大前提作为特例包括进来的普遍公式。 从而,这一连串永无休止的三段论就简化为几行短语。 正如我上面已经说明的,现在很容易理解一个定理的每一个特定推论都能够用纯粹分析的程度来核验。 如果我们不去证明我们的定理对于所有数为真,例如我们只希望证明它对6这个数为真,那么建立我们的多级瀑布的头五个三段论对我们来说就足够了;如果我们想针对数10证明该定理,那么只需要9个三段论;数越大,需要的三段论也就越多;然而,不管这个数多么大,我们总能达到目的,从而分析核验是可能的。 可是,无论我们走得多么远,我们也无法上升到对于一切数都适用的普遍定理,而唯有普遍的定理,才是科学的目标。欲达此目的,需要无穷个三段论;这就必须跨越只局限于形式逻辑方法的分析家的忍耐力永远也无法填满的深渊。 起初我曾问过,人们为什么不想象出一个神通广大的心智,一眼就洞察到整个数学真理的本质。 现在很容易回答了;棋手能够预料四五步棋,不管他多么非凡,他也只能准备有限步棋;假使他把他的本领用于算术,他也不能凭借单一的直接直觉察觉算术的普遍真理;为了获得最微小的定理,他也不得不借助递归推理,因为这是能使我们从有限通向无限的工具。 这个工具总是有用的,因为它容许我们像我们所希望的那样飞速跨越许多阶梯,它使我们省去冗长的、使人厌烦的和单调的核验,而这种核验会很快地变得不能实施。但是,只要我们以普遍的定理为目的,它就变得必不可少了,而分析的核验虽则可以使我们不断地接近这一目的,却永远无法使我们达到它。 在算术这个领域,我们可以认为我们自己距微积分十分遥远,然而,正如我们刚刚看到的,数学无限的观念已经起着举足轻重的作用,没有它便没有科学,因为在那里没有普遍的东西。 Ⅵ 递归推理所依据的判断能够处于其他形式之下;例如,我们可以说,在不同整数的无限个集合中,总存在着一个比所有其他数都小的数。 我们能够很容易地从一个阐述推到另一个阐述,由此便产生已经证明过递归推理的合法性的幻觉。但是,我们总会受到阻碍,我们总会达到不可证明的公理,而这个公理实际上只不过是有待证明的、翻译成另一种语言的命题罢了。 因此,我们无法摆脱这样一个结论:递归推理的法则不能划归为矛盾律。 对我们来说,这个法则也不能来自经验;经验能够告诉我们,该法则对头十个数或头一百个数为真;例如,它不能到达无限系列的数,而只能到达这个系列的一部分,不管该部分或长或短,但总是有限的。 现在,假若只是那样一个问题,则矛盾律也就足够了;它总会容许我们展开像我们所希望的那么多的三段论;只有在把无限个三段论包括在单一的公式中时,只有在无限面前时,矛盾律才会失效,也就是在那里,经验变得软弱无力。这个法则是分析证明和经验难以得到的,它是先验综合判断的真正类型。另一方面,我们也不能企图在它之内像在几何学的某些公设中那样看见约定。 可是,这种判断为什么以不可遏止之势迫使我们服从呢?那是因为,它只是证实了心智的威力,心智知道,它本身能够想象得出,只要这种行为一次是可能的,同样的行为就可以无限期地重复下去。心智对这种威力有一种直接的直觉,而经验只不过是为利用它、并进而变得意识到它提供机会。 但是,有人会问,如果未加工的经验不能证明递归推理的合法性,那么借助于归纳的实验也是这样吗?我们陆续看到,一个定理对1,2,3等数为真;我们说,这个规律是明显的,它像每一个基于为数很多、但却是有限的观察的物理学定律一样,有着相同的根据。 必须承认,在这里存在着与通常的归纳程序酷似之处。不过,也有本质的差别。用于物理科学中的归纳总是不确定的,因为它建立在宇宙具有普遍秩序的信念上,而这种秩序却是在我们之外的。相反地,数学归纳法即递归证明却必然地强加于我们,因为它只不过是心智本身的特性的确认。 Ⅶ 正如我前面已经说过的,数学家总是力图概括他们所得到的命题,不必另找例子,我刚才已经证明了等式: a+1=1+a, 后来利用它建立等式 a+b=b+a, 该等式显然更为普遍。 因此,像其他科学一样,数学也能够从特殊行进到普遍。 在开始这项研究时,这是一个我们似乎不可理解的事实,但是由于我们弄清了递归证明和普通归纳的类似性,这个事实在我们看来就不再神秘了。 毫无疑问,数学中的递归推理和物理学中的归纳推理建立在不同的基础上,但是它们的步调是相同的,它们在同一方向前进,也就是说,从特殊到普遍。 让我们稍为比较仔细地审查一下这种情况。 为了证明等式 a+2=2+a, 只要把法则 a+1=1+a(1) 运用两次就足够了,而且可以写出 a+2=a+1+1=1+a+1=1+1+a=2+a.(2) 无论如何,用纯粹分析的方法从等式(1)如此演绎出来的等式(2)绝不仅仅是(1)式的特例;它是完全不同的某种东西。 因此,我们甚至不能说:在数学推理的真正分析的和演绎的部分,我们是在该词的通常意义上从普遍行进到特殊。 与等式(1)的两个数相比,等式(2)的两个数只不过是更为复杂的组合而已,分析仅仅用来把进入这些组合中的元素分开并研究它们的关系。 因此,数学家是“通过构造”而工作的,他们“构造”越来越复杂的组合。他们通过分析这些组合,这些集合体,可以说返回到它们的初始元素,他们察觉到这些元素的关系,并从它们推导出集合体本身的关系。 这是纯粹分析的步骤,但是它无论如何不是从普遍到特殊的步骤,因为很明显,不能把集合体视为比它们的元素更特殊。 人们正当地赋予这种“构造”程序以重大的意义,一些人还力图从中发现精密科学进步的必要条件和充分条件。 无疑地,这样做是必要的;但并不是充分的。 要使一种构造物有用而不白费心血,而且可以作为人们希望攀登的阶梯,那么它首先必须具有一种统一性,这种统一性能使我们从中看到某种东西,而不只是看到它的元素本身的并置。 或者,更确切地讲,考虑构造物,而不是考虑它的元素本身,必定有某些好处。 这种好处能够是什么呢? 例如,为什么针对总是可以分解为三角形的多边形推理,而不针对基本的三角形推理呢? 这是因为属于任何边数的多边形的特性可以用于任何特定的多边形。 相反地,通过直接研究基本三角形的关系发现这些特性,结果就要耗费大量的精力。知道了普遍定理便节省了这些精力。 因此,一个构造物要变得有趣,只有当它能够与其他类似的构造物并列,从而形同一个属(genus)的种(species)时。 假如四边形不是两个三角形的并置,这是因为它属于多边形之属。 而且,人们必定能够证明这个属的特性,而不会被迫针对每一个种去相继建立它们。 欲达此目的,我们必须攀登一个或多个阶梯,从特殊上升到普遍。 “通过构造”的分析程序没有迫使我们下降,而是让我们留在同一水平线上。 我们只有借助数学归纳法才能攀登,唯有它能够告诉我们某种新东西。没有在某些方面与物理学归纳法不同的、但却同样有效的数学归纳法的帮助,则构造便无力去创造科学。 最后要注意,只有同样的运算能够无限地重复,这种归纳法才是可能的。这就是为什么国际象棋的理论从来也不能变成科学,因为同一象棋比赛的不同走法彼此并不相似。 [book_title]第二章 数学量和经验 要获悉数学家对连续统(continuum)任何理解,人们不应询问几何学。几何学家总是企图或多或少地想象他所研究的图形,但是他的表象在他看来仅仅是一种工具;在创造几何学时,他要利用空间,正如他用粉笔画图一样;对非本质的东西不应当赋予过多的权重,其重要性往往并不比粉笔的白色更多一些。 纯粹的解析家并不害怕这一危险。他使数学科学脱离所有无关的元素,而且他能够回答我们的问题:“严格地说来,数学家就其进行推理的这个连续统是什么呢?”许多对他们的技艺进行沉思的解析家已经做出了回答;例如,塔纳里(Tannery)先生在他的《单变函数论导论》一书中就这样作了。 让我们从整数的标度开始;在两个连续步骤之间插入一个或多个中间步骤,然后在这些新步骤中再插入其他步骤,如此类推,以至无穷。这些步骤将是所谓的分数、有理数或可通约数。但是,这还不够;无论如何,在这些已经是无限个数的项之间,还必须插入称之为无理数或不可通约数的其他数。在更进一步之前,我们要评论一下。如此设想的连续统,只不过是按某种顺序排列起来的、在数目上无限的个体的集合物,它虽则为真、但却是相互外在的。这不是通常的概念,其中假定,在连续统的元素之间,存在着一类使它们成为整体的密切的结合物,在那里,点不是在线之先,而是线在点之先。从“连续统是相重数(multiplicity)的单位(unity)”这一受人称颂的公式中,只保留着多样性(multiplicity),统一性(unity)却消失了。解析家在像他们所作的那样定义连续统时,他们仍然是正确的,因为只要他们夸耀他们的严格性,他们总是正好以此公式推理的。这足以告诉我们,真正的数学连续统是与物理学家的连续统和形而上学家的连续统大相径庭的东西。 也许可以说,满足于这个定义的数学家受到词的愚弄,为了解释这些中间步骤如何被插入,为了证明这样做是可能的,就必须精确地讲出每一个中间步骤的是什么。但是,那就错了;在他们的推理 [1] 中所运用的这些步骤的唯一特性是在如此这般的步骤之前或之后存在的特性;因此,也唯有这一特性应当出现在定义中。 这样看来,中间项应该如何插入不需要我们涉及;另一方面,没有一个人会怀疑这种操作的可能性,除非他忘记了,在几何学家的语言中,可能的仅仅意味着无矛盾。 不管怎样,我们的定义还不完备,我将在这段冗长的题外话之后再谈及它。 不可通约数的定义。柏林学派的数学家,尤其是克罗内克(Kronecker),不用整数以外的任何材料,致力于构造分数和无理数的这一连续标度。照此看来,数学连续统也许是心智的纯粹创造,经验大概并未参与其中。 有理数概念对他们来说似乎没有困难,他们主要力求定义不可通约数。可是,在这里介绍他们的定义之前,我必须议论一下,以抢先保证不引起那些不熟悉几何学家习惯的读者的惊奇。 数学家研究的不是客体,而是客体之间的关系;因此,只要关系不变,这些客体被其他客体代换对他们来说是无关紧要的。在他们看来,内容(matter)是不重要的,他们感兴趣的只是形式。 不想到这一点,就无法理解戴德金(Dedekind)竟然会把纯粹的符号称为不可通约数,也就是说,这种数完全不同于应当是可度量的并且几乎是可触知的量的普通观念。 现在,让我们看看戴德金的定义是什么: 可通约数能够以无穷方式分为两类,以致第一类中的任何数都大于第二类中的任何数。 也可能会出现这种情况:在第一类数中,有一个数小于所有其他数;例如,如果我们把所有大于2的数和2本身排在第一类,把所有小于2的数排在第二类,那么很清楚,2将是第一类所有数中最小的。数2可以选来作为这种分类的符号。 相反地,也可能会出现下述情况:在第二类数中,有一个数大于所有其他数;例如,如果把所有大于2的数排在第一类,把所有小于2的数和2本身排入第二类,情况就是这样。在这里,数2再次可以选作分类的符号。 但是,同样完全可以发生下述情况:在第一类中既不存在小于所有其他数的数,在第二类中也不存在大于所有其他数的数。例如,假定我们把其平方大于2的所有可通约数放入第一类,把其平方小于2的所有可通约数放入第二类。这里没有其平方恰恰是2的数。显然,在第一类中没有小于所有其他数的数,因为不管一个数的平方多么接近2,我们总是能够找到一个可通约数,其平方更接近于2。 按照戴德金的观点,不可通约数 或 无非是把可通约数分开的这一特殊式样的符号;于是,对于每一种分开的式样,对应着一个可通约数或不可通约数作为它的符号。 可是,满足这一点也许未免过于轻视这些符号的来源了;依然要说明,我们如何被导致把一种具体的存在赋予它们,此外,甚至对于分数本身来说,一开始不就存在着困难吗?如果我们预先不了解我们认为是无限可分的内容即连续统,我们会有这些数的概念吗? 物理连续统。我们于是问自己,数学连续统的概念是否只是从经验而来。如果是,那么经验的粗糙材料——这就是我们的感觉——也许容许度量。我们可能被诱使认为,它们实际上就是如此,由于最近有人企图去测量它们,甚至提出了一个通称费希纳(Fechner)定律的规律,按照这个定律,感觉与刺激的对数成正比。 然而,如果我们较为仔细审查一下曾经试图建立这个定律的实验,我们将会得出截然相反的结论。例如,人们观察到,10克的重物A和11克的重物B产生相同的感觉,重物B与12克的重物C同样无法区分,但是重物A却很容易与重物C区别开来。于是,经验的粗糙结果可以用下述关系来表示: A=B,B=C,A<C, 可以把这些关系视为物理连续统的公式。 可是,这里存在着与矛盾律无法容忍的背离,消除这一背离的需要迫使我们发明数学连续统。 因此,我们不能不得出结论:这一概念完全是由心智创造的,但是经验为它提供了机会。 我们无法相信,等于第三个量的两个量彼此不相等,以致我们可以假定,尽管A不同于B,B不同于C,但是由于我们的感官不完善,不容许我们区别它们。 数学连续统的创造。第一阶段。迄今为止,为了说明事实起见,只要在A和B之间插入几项就足够了,这几项依然是离散的。如果我们求助于某些工具以弥补我们感官的软弱无力,例如我们使用显微镜,那么现在会发生什么情况呢?像以前不可区别的A和B项,现在也似乎可以区分了;可是,在现在变得可区分的A和B之间再插入一个新项D,则我们既不能把它与A区别开来,也不能把它与B区别开来。除非使用最完善的方法,我们经验的粗糙结果将总是呈现具有内在矛盾的物理连续统的特征。 只有在已经区分开来的项中连续不断地插入新项,我们才能摆脱它,而且这一操作必须无限期地进行。如果我们能够想象某种威力充分强大的工具,足以把物理连续统分解为离散的元素,就像望远镜把银河分解为恒星那样,我们就可以设想中止这种操作。但是,我们不能想象这一点;事实上,我们正是用眼睛观察显微镜放大了的图像的,因此这个图像必然总是包含着视觉的特征,从而包含着物理连续统的特征。 直接观察到的长度和用显微镜放大一倍的这一长度之半无法区分。整体与部分是齐性的;这是一个新的矛盾,或者确切地讲,如果假定项数是有限的才是这样的;事实上,很清楚,包含比整体少的项的部分不可能相似于整体。 当项数被认为是无限时,矛盾就不存在了;例如,没有什么东西妨碍人们认为整数的集合相似于偶数的集合,虽则偶数只不过是整数的一部分;事实上,每一个整数都对应着一个偶数,即对应着整数的倍数。 但是,心智被引导创造出用无限数目的项形成的连续统的概念,这并不仅仅是为了避免包含在经验材料中的这种矛盾。 一切都像在整数序列中发生的一样。我们有能力设想,一个单位能够加到多个单位的集合中;多亏经验,我们才有机会训练这种能力,我们逐渐意识到它;可是,从这时起,我们感到我们的能力没有限度,我们能够无限期地数下去,尽管我们从来还没有数过多于一个有限数目的对象。 同样地,只要我们被诱使在一个级数的两个相继项之间插入中间项,我们便发觉,这种操作能够超越所有限度而继续下去,也就是说,没有停止的固有理由。 为简便起见,让我把按照与可通约数的标度相同的规则形成的项的每一个集合称为一阶数学连续统。如果我们进而按照形成不可通约数的规律插入新的步骤,我们将会得到我们所谓的二阶连续统。 第二阶段。迄今,我们仅仅是迈出了第一步;我们说明了一阶连续统的起源;但是,有必要看到,为什么甚至连它们也不是充分的,为什么必须发明不可通约数。 如果我们试图想象一条线,那么它必须具有物理连续统的特征,也就是说,除非具有某一宽度,否则我们将无法描绘它。于是,两条线在我们看来似乎形成了两条狭带,如果我们满足于这种粗糙的图像,那么显而易见,若两线相交,则它们将拥有公共部分。 可是,纯粹几何学家却做出进一步的努力;他完全放弃了感官的帮助,试图达到没有宽度的线的概念、没有广延的点的概念。他只有把线视为不断变窄的带子的极限,把点视为不断缩小的面积的极限,才能够得到这个概念。其次,不管我们的两条相交的带子多么窄,它们总有公共的面积,带子越窄,面积越小,它们的极限将是纯粹几何学家所谓的点。 这就是人们说两条相交的线具有公共点的原因,这个真理似乎是直觉的。 然而,如果线被设想为一阶连续统,也就是说,在几何学家所画的线上只能找到具有有理数坐标的点,那它就含有矛盾。例如,只要人们坚持直线和圆的存在,则矛盾是很明显的。 事实上,很清楚,假如唯有其坐标是可通约数的点才被认为是真实的,那么正方形的内接圆和这个正方形的对角线便不会相交,因为交点的坐标是不可通约的。 这还不可能是充分的,因为我们以这种方式得到的只是某些不可通约数,而不是全部不可通约数。 可是,设想一下一直线分为两条射线。每条射线在我们的想象中似乎都是某种宽度的带子;而且,这两条带子将相互叠加,由于在它们之间必须没有空隙。这个公共部分在我们看来好像是一点,当我们力图把带子想象得越来越窄时,该点将总是保留着,以至于我们承认,若一直线被切割为两条射线,则它们的公共边界是一个点,这是直觉的真理;在这里我们辨认出戴德金(Dedekind)的概念:不可通约数被视之为两类有理数的公共边界。 这就是二阶连续统的起源,这恰恰是所谓的数学连续统。 摘要。简而言之,心智具有创造符号的能力,从而正是心智,构造了只是符号特殊系统的数学连续统。其能力只是受到避免所有矛盾的必要性的限制;但是,只有经验向那里给心智提供刺激物,心智才能利用这种能力。 在所考虑的情况下,这种刺激物是从感觉的粗糙材料中引出的物理连续统的概念。不过,这个概念导致了一系列的矛盾,必须使我们自己相继从这些矛盾中摆脱出来。照此办理,我们势必想象越来越复杂的符号系统。至今,我们在其中停下来的系统不仅无内部矛盾(在我们经过的所有的阶段已经如此),而且与各种所谓的直觉的命题也无矛盾,这些直觉命题是从或多或少经过提炼的经验概念中推导出来的。 可测量的量。迄今为止,我们所研究的量都不是可测量的;我们固然能够说这些量中的一个给定量是否比另一个大,但却不能说它是否比另一个大一倍还是大两倍。 截至目前,我仅仅考虑了我们的项排列的顺序。可是,就大多数应用来说,这并不充分。我们必须学会比较把任何两项分开的区间。只有在这个条件的基础上,连续统才会变为可测量的量,算术运算才是可应用的。 这只能借助新的、特殊的约定来进行。我们将公认,在这样的情况下,A项和B项之间的区间等于C项和D项之间的区间。例如,在我们的著作的开头,我们曾从整数的标度开始,我们设在两个相继步骤之间插入n个中间步骤;好了,这些新步骤根据约定将被视为是等距离的。 这是定义两个量的加法的方式,因为若区间AB根据定义等于区间CD,则区间AD根据定义将是区间AB和CD之和。 这个定义在很大程度上是任意的。然而也不完全如此。它服从某些条件,例如服从加法交换律和结合律。不过,一旦选定的定义满足这些法则,选择就无关紧要了,列举它也就无用了。 几点评论。现在,我们能够讨论几个重要的问题: 1°心智的创造力由于数学连续统的创造而枯竭了吗? 不,杜布瓦-雷蒙(Du Bois-Reymond)以引人注目的方式证明这一点。 我们知道,数学家区分不同阶的无限小,二阶无限小不仅以绝对的方式是无限小,而且相对于一阶无限小也是无限小。不难设想分数阶的无限小乃至无理数阶的无限小,从而我们再次发现数学连续统的标度,这正是我们在前几页所处理的。 再者,有些无限小相对于一阶无限小是无限小,相反地,它们相对于1+ε阶无限小则是无限大,而不管ε可能多么小。于是,这里有插入级数中的新项,如果可以容许我回复到不久前使用过的、虽不怎么通用但却十分方便的措辞,那么我将说,这样便创造了一种三阶连续统。 要再进一步是很容易的,但这却是无用的;人们只能想象没有应用可能的符号,没有一个人想这样做。考虑到不同阶的无限小而导致的三阶连续统本身并没有有用到足以赢得公民身份,几何学家只是把它视为珍奇的玩意儿。心智运用它的创造能力,只有在经验需要它的时候才行。 2°一旦有了数学连续统的概念,人们能免除类似于产生它的那些矛盾吗? 不能,我将举一个例子。 人们必须很博学,才不致认为凡曲线都有切线是明显的;事实上,如果我们把这个曲线和一条直线画为两条窄带,我们总是能够如此安排它们,使它们有公共部分而不相交。其次,如果我们想象这两条带子的宽度无限地缩小,这个共同部分将总是继续存在,可以说到达极限,两线将有共同点而不相交,也就是说,它们将相切。 以这种方式推理的几何学家只是有意或无意地正在做我们在上面已经做过的事情,即证明两线相交有一公共点,他的直觉好像是合理的。 可是,直觉也许会欺骗他。我们能够证明,存在着没有切线的曲线,倘若这样的曲线被定义为二阶分析连续统的话。 毫无疑问,类似于我们上面已经讨论的某些技巧也许足以消除矛盾;但是,因为这只有在十分例外的情况下才会遇到,它没有受到进一步的注意。 我们不想试图把直觉与解析调和起来,我们甘愿牺牲二者之一,因为解析必定依然是无懈可击的,所以我们决定舍弃直觉。 多维物理连续统。我们在上面讨论了从我们感官的直接材料引出的物理连续统,或者,如果你乐意的话,也可以说是从费希纳实验的粗糙结果引出的物理连续统;我已经表明,这些结果总括在下述矛盾的公式中: A=B,B=C,A<C. 现在让我们看看,这一概念怎样被概括,如何从它得出多维连续统的概念。 考虑任何两个感觉的集合。或者我们能够把它们一一辨别开来,或者我们不能辨别,正像在费希纳实验中那样,10克的重物能够与12克的重物区别开来,但不能与11克的重物区别。这就是为构造多维连续统所需要的一切。 让我们把这些感觉集合中的一个集合称为一个元素。这类似于数学家的点;不过也不是完全相同的东西。我们不能说我们的元素没有广延,由于我们无法把它与邻近的元素加以区别,从而它犹如被一种烟雾包围着。假如可以容许用天文学作比,那么我们的“元素”也许像星云,而数学点则像恒星。 这已得到承认,如果我们借助于每一个元素都与前一个可以区分的相继元素的系列,能够从它们中的任何一个到达另一个,那么元素的系统将形成一个连续统。这种线性系列就是数学家的线,而孤立的元素则是点。 在进一步之前,我们必须解释所谓截量意味着什么。考虑一个连续统C,并从中取出它的某些元素,我们暂时将认为这些元素不再属于这个连续统。如此取出的元素的集合将被称之为截量。于是便发生了下述情况:由于这个截量,C可以再分为许多不同的连续统,留下的元素的集合不再形成唯一的连续统。 于是,在C上将有两个元素A和B,必须认为它们属于两个不同的连续统,而且人们将承认这一点,因为不可能找到C的相继元素的线性系列,这些第一个是A而最后一个是B的元素中的每一个都与前一个不可区分,这个系列中的元素之一不能与截量中的元素之一区分开来。 相反地,也可能出现这样的情况:所做出的截量不足以再分割连续统C。为了对物理连续统进行分类,我们将严格地审查,为了再分它们必须做出的截量是什么。 如果一个物理连续统C能够被一个截量再分,而这个截量可以划归为都可以相互区分的有限数目的元素(从而既不形成一个连续统,也不形成几个连续统),那么我们将说C是一维连续统。 相反地,如果C只能被本身是连续统的截量再分,我们便说C有多维。如果是一维连续统的截量就能够再分,我们便说C有两维;如果是两维连续统的截量就足以再分,我们便说C有三维,如此等等。 这样一来,由于两个感觉集合是可区分的或不可区分的这一十分简单的事实,便定义了多维物理连续统的概念。 多维数学连续统。通过完全类似于我们在本章开头所讨论的过程,n维数学连续统的概念由此十分自然地涌现出来。你知道,这种连续统的点在我们看来好像是用称之为其坐标的n个不同的量的系统来定义的。 这些量并不需要总是可测量的;例如,有一种与测量这些量无关的几何学的分支,在这种几何学中,例如需要了解的问题只是,在曲线ABC上,点B是否在点A和点C之间,而不需要了解弧AB是等于弧BC呢,还是比弧BC大一倍呢。这就是所谓的拓扑学。 这是一门完整的学说,它吸引了绝大多数几何学家的注意力,我们从中看到,一系列值得注意的定理一个从另一个里涌现出来。这些定理与通常的几何学的定理的不同之处在于,它们纯粹是定性的,即使图形被拙劣的绘图员画得严重歪曲了比例,由于颤抖而把直线画得多少有些弯曲,这些定理依然为真。 由于我们希望接着把测量引入刚刚定义的连续统,于是这个连续统变为空间,几何学诞生了。但对此的讨论留在第二编。 * * * [1] 以及包括在特殊约定中的推理,这些约定适合于定义加法,我将在后面谈到它们。 [book_chapter]第二编 空间 [book_title]第三章 非欧几何学 每一个结论假定先有前提;这些前提本身或者是自明的而不需要证明,或者只能依赖其他命题而建立,鉴于我们不能这样追溯到无穷,每一门演绎科学,尤其是几何学,必须以某一数目的不可证明的公理为基础。因此,有关几何学的论著,都是以陈述这些公理开始的。不过,在这些公理中,也要有所区分:例如,“等于同一量的一些量彼此相等”就不是几何学命题,而是分析命题。我认为它们是先验分析判断,我不愿去理会它们。 可是,我必须强调几何学所特有的其他公理。大多数专著中都明确地陈述了这三个公理: 1°通过两点只能作一条直线; 2°直线是一点到另一点的最短的路径; 3°通过一给定点只能引一条直线与已知直线平行。 一般地,虽然第二个公理的证明被省略了,但是从其他两个公理以及从许多默认而没有阐述它们的公理中,可以把它演绎出来,我将进一步说明这一点。 人们长期以来也想证明第三个公理,即所谓的欧几里得公设,但总是白费气力。人们为这一幻想的期望耗费了多么巨大的精力啊,其情景真是令人不可思议。最后,在19世纪头25年,几乎在同一时期,匈牙利的鲍耶(Bolyai)和俄国的罗巴契夫斯基无可辩驳地指出,这种证明是不可能的;他们几乎使我们摆脱了“无公设”的几何学的发明家;从此以后,法国科学院每年仅收到一两篇新证明的论文。 问题并没有结束;不久,由于黎曼(Riemann)发表了题为《几何学的基本假设》的著名论文,问题才获得了巨大进展。这篇论文引出了许多新近的著作,我将进一步谈论它们,在这些著作中,引用一下贝尔特拉米(Beltrami)和亥姆霍兹(Helmholtz)的著作是合适的。 鲍耶-罗巴契夫斯基几何学。假如可以从其他公理导出欧几里得公设,那么显而易见,在否定该公设和承认其他公理时,我们便会导致出矛盾的推论;因此,不可能在这样的前提上建立融贯的几何学。 现在,这恰恰是罗巴契夫斯基所做的事情。 他开始假定:通过一给定点能够引两条与已知直线平行的直线。 此外,他仍保留了欧几里得的所有其他公理。从这些假设出发,他演绎出一系列定理,在其中不可能找到任何矛盾,而且他构造出一种几何学,其完美无缺的逻辑绝不亚于欧几里得几何学的逻辑。 当然,这些定理与我们习用的定理截然不同,乍看起来,它们不能不使人们稍感困惑。 例如,三角形的三个角之和总是小于两直角,这个和和两直角之差与三角形的曲面成比例。 不可能构造一个与已知图形相似、但具有不同维度的图形。 如果我们把圆周分为n等分,并在各分点引切线,若圆的半径足够小,则这n个切线将形成一个多边形;可是,若这个半径足够大,则它们将不相交。 多举这些例子是无用的;罗巴契夫斯基的命题与欧几里得的命题毫不相干,但它们在逻辑上却是相互密切关联的。 黎曼几何学。设想一个唯一地由没有厚度(高度)的生物栖息的世界;并假定这些“无限扁平”的动物都在同一平面而不能离开。此外,还要承认这个世界距其他世界足够远,以致摆脱了那些世界的影响。当我们正在做假设时,我们不妨再赋予这些生物以理性,并相信它们能够创造几何学。在此情况下,它们将肯定认为空间只有两维。 不过,现在假定,这些想象的动物虽则依然没有厚度,但它的体形却是球形的而不是平面形的,它们都在同一球上,没有能力走出去。它们将构造什么几何学呢?首先,很清楚,它们将认为空间只有两维;对它们来说,起直线作用的将是球面上一点到另一点的最短路径,即大圆弧;一句话,它们的几何学将是球面几何。 它们所谓的空间将是它们必须停留于其上的这个球面,在这个球面上,发生着它们能够了解的一切现象。因此,它们的空间将是无界的,因为在一个球面上人们总是能够一直向前而永远也不会停下来,不过它们的空间将是有限的;人们从来也不能找到它的终点,但却可以绕它转圈子。 好了,黎曼几何学是扩展到三维的球面几何。为了构造它,这位德国数学家不仅不得不抛弃欧几里得公设,而且也不得不抛弃第一个公理:通过两点只能作一条直线。 一般地讲,在球面上,通过两已知点我们只能引一个大圆(正如我们刚才看到的,对于我们想象的生物来说,这种大圆可以起直线的作用);但是也有例外:若两已知点在对径上,则通过它们能引无数个大圆。 同样地,在黎曼几何学(至少在它的各种形式之一)中,通过两点一般只能引一条直线;但是也有例外情况,即通过两点能引无数条直线。 在黎曼几何学和罗巴契夫斯基几何学之间存在着某种对立的东西。 例如,三角形的角之和是: 在欧几里得几何学中等于两直角; 在罗巴契夫斯基几何学中小于两直角; 在黎曼几何学中大于两直角。 通过一给定点能够引与已知直线共面但无论在什么地方也不与之相交的直线数是: 在欧几里得几何学中等于1; 在黎曼几何学中等于0; 在罗巴契夫斯基几何学中等于无限。 而且,黎曼空间虽则是无界的,但却是有限的,这是在上面给予这两个词的意义上而言的。 常曲率面。一种反对意见依然是可能的。罗巴契夫斯基和黎曼的定理没有表现出矛盾;可是,这两位几何学家无论从他们的假设中引出多么多的推论,他们也必须在穷尽这些推论之前停下来,不然其数目将是无限的了;而且,谁能够说,如果他们把演绎推得更远一些,他们最终不会达到某些矛盾吗? 对于黎曼几何学而言,只要把它限制在两维,就没有这种困难;事实上,正如我们看到的,两维黎曼几何学与球面几何毫无差别,它只是普通几何学的一个分支,因而毋庸讨论。 同样,贝尔特拉米把罗巴契夫斯基的两维几何学看做是普通几何学的一个分支,他也驳斥了有关的反对意见。 在这里,且看他是如何完成它的。考虑曲面上的任何图形。设想这个图形以下述方式画在一个易弯曲而不可扩展的、紧贴在这个曲面的画布上:当这个画布移动和变形时,这个图形的各种线条能改变它们的形状而不改变它们的长度。一般说来,这个易弯曲而不可扩展的图形在不离开该曲面的情况下是不能移动的;但是,也有某些特殊的曲面可以这样移动;这就是常曲率面。 如果我们重新开始上面所作的比较,并设想没有厚度的生物生活在这些曲面之一上,那么它们将认为其所有线条在长度上依然保持不变的图形的运动是可能的。相反地,对于生活在可变曲率面上的无厚度的动物来说,这样一种移动似乎是荒谬的。 这些常曲率面分为两类:一些是正曲率的,它们能够变形而紧贴在球面上。因此,这些曲面的几何学本身划归为球面几何,这就是黎曼几何学。 其余是负曲率的。贝尔特拉米证明,这些曲面几何学无非是罗巴契夫斯基几何学。这样一来,黎曼和罗巴契夫斯基的二维几何学便与欧几里得几何学相关。 非欧几何学的诠释。就这样,便消除了迄今关涉二维几何学的反对意见。 可以很容易地把贝尔特拉米的推理推广到三维几何学。不排斥四维空间的心智将不会从中看到困难,但这种心智寥寥无几。因此,我宁可在其他方面继续讲下去。 考虑某一平面,我将称其为基本平面,并编制一种词典,使写在两列中的两组术语一一对应,就像在普遍词典中其意义相同的两种语言的词相对应一样: 空间:位于基本平面以上的空间部分。 平面:与基本平面正交的球面。 直线:与基本平面正交的圆。 球面:球面。 圆:圆。 角:角。 两点之间的距离:这两点以及基本平面与通过这两点的、并与之正交的圆的交点之交比的对数。如此等等。 现在,以罗巴契夫斯基定理为例,并借助这本词典翻译它们,正如我们用德英词典翻译德文文本一样。这样,我们将得到普通几何学的定理。例如,有一罗巴契夫斯基定理:“三角形的角之和小于两直角”,它可以这样翻译为:“如果一曲线三角形的边延长后是与基本平面正交的圆弧线,则这个曲线三角形的角之和将小于两直角。”于是,不管把罗巴契夫斯基假设的推论推得多么远,它们将永远也不会导致矛盾。事实上,假如两个罗巴契夫斯基定理是矛盾的,那么它势必与借助于我们的词典所翻译的这两个定理的译文相同,但是这些译文是普通几何学的定理,而没有人对普通几何学无矛盾表示怀疑。这种确定性从何而来呢,它被证明是正当的吗?这是一个我无法在这里处理的问题,因为说起来话就长了,但是,它是十分有趣的,我不认为不可解决。 因此在这里不存在我在上面所阐述的反对意见。这并非一切。罗巴契夫斯基几何学可容许被具体地加以诠释,而并不是空洞的逻辑练习,它还可以应用;在这里,我无暇谈论这些应用,也无暇谈及克莱因(Klein)和我为积分线性微分方程从它们得到的帮助。 而且,这种诠释并不是唯一的,人们可以编制许多类似于前述词典的词典,它们都能使我们通过简单的“翻译”,把罗巴契夫斯基定理变换为普通几何学定理。 隐公理。在我们的专著中明确阐述的公理是几何学的唯一基础吗?由于注意到,在它们被相继抛弃后,还留下某些与欧几里得、罗巴契夫斯基和黎曼的理论共同的命题,所以我们确信它们并不是几何学的唯一基础。这些命题必须建立在几何学家没有阐述但却公认的前提上。试图把它们与经典证明分清,这是有趣的事。 斯图尔特·穆勒(Stuart Mill)宣称,每一个定义都包含着公理,因为在定义时,人们隐含地断言被定义的客体的存在。这未免走得太远了;在数学中,在下定义之后,免不了接着要证明被定义的对象的存在,人们之所以一般省去证明,是因为读者能够很容易地补充它。绝对不要忘记,当涉及数学实体时,当谈论物质的对象问题时,存在这个词与之并非同义。一个数学实体存在,只要它的定义既在自身之内不隐含矛盾、或与已经公认的命题不发生矛盾就可以了。 不过,即使斯图尔特·穆勒的观察不能用于所有定义,但对于它们中的一些依然是正确的。平面有时被如下定义: 平面是这样一种面,即连接该面任何两点的直线全部在这个面上。 这个定义明显地隐藏着一个新公理;的确,我们必须改变它,这也许更为可取,不过我们为此应该明确地阐述公理。 其他定义也能引起并非不重要的思考。 例如,二图形相等的问题;两图形相等,只有它们能够叠合才行,要使它们叠合,则必须移动一个,直至它与另一个重合;可是,将如何移动它呢?如果我们问这个问题,那么我们无疑会被告知,必须在不改变其形状的情况下移动它,就像它是刚体一样。因此,显然会出现循环论证。 事实上,这个定义并没有定义什么;对于生活在只有流体的世界的生物来说,它是毫无意义的。假如它在我们看来似乎是清楚的,那是因为我们利用了天然固体的性质,天然固体与所有维度都不可改变的理想固体并没有很大的差别。 尽管这个定义可能是不完善的,但它也隐含着公理。 刚性图形运动的可能性并不是自明的真,或者至少仅就欧几里得公设的样式来看是如此,它不像先验分析判断那样。 再者,在研究几何学的定义和证明时,我们看到,人们被迫在毫无证据的情况下不仅承认这种运动的可能性,此外还要承认它的某些性质。 可以立即从直线的定义中看到这一点。人们给出了许多有缺陷的定义,但是真正的定义却隐含在直线所参与的一切证明中: “刚性图形的运动可以这样发生:属于这个图形的线的各点依然不动,而处于这条线外的各点则运动。这样的线被称之为直线。”在这个阐述中,我们故意把定义和它所隐含的公理隔离开来。 许多证明,例如三角形全等例子的证明,从一点向一直线引垂线的证明,都预先假定了未阐述的命题,因为它们需要承认,在空间以某种方式移动图形是可能的。 第四种几何学。在这些隐公理中,有一个公理在我看来似乎是值得注意一下的,因为抛弃了它,便能够构造出像欧几里得、罗巴契夫斯基和黎曼的几何学一样融贯的第四种几何学。 为了证明在一点A总可以向直线AB引垂线,我们考虑一直线AC,它可以绕A点移动且开始时与固定的直线AB重合;我们使它绕点A转动,直到它转到AB的延长线上。 这样一来,便预先假定了两个命题:首先,这样的转动是可能的,其次,转动可以继续下去,直到两条直线互为延长线时为止。 如果承认第一点而否认第二点,我们便有可能得到一系列定理,这些定理甚至比罗巴契夫斯基和黎曼的定理更奇异,但同样没有矛盾。 我只想引用这些定理中的一个,它并不是最奇特的:实直线可以垂直于它本身。 李定理。在典型的证明中,隐含地引入的公理数比所需要的要多,把它简化到最少也许是引人入胜的。希尔伯特(Hilbert)仿佛已对这个问题做出了最后的解答。首先,人们大概会先验地询问,这种简化是否可能,必要的公理数和可以想象的几何学数是否不是无限的。 索弗斯·李(Sophus Lie)定理支配着这一整个讨论。它可以这样阐述: 假定下述前提得到公认: 1°空间有n维; 2°刚性图形的运动是可能的; 3°要决定这个图形在空间的位置需要p个条件。 适合于这些前提的几何学数将是有限的。 甚至还可以附加说,如果n是已知的,能够指定最高极限为p。 因此,如果承认运动的可能性,那么只能发明有限(甚至是相当少的)数目的三维几何学。 黎曼几何学。可是,这个结果似乎受到黎曼的反驳,因为这位学者构造了无数不同的几何学,通常以他名字命名的几何学只是一个特例。 他说,一切均取决于如何定义曲线的长度。现在,有无数定义这一长度的方法,它们中的每一个都可以成为新几何学的起点。 这是完全为真,不过这些定义中的大多数都与刚性图形的运动格格不入,而在李定理中,则假定这种运动是可能的。因此,这些黎曼几何学尽管在许多方面如此有趣,但它们永远不过是纯粹分析的,是不适合于类似于欧几里得那样的证明的。 希尔伯特几何学。最后韦罗纳塞(Veronese)先生和希尔伯特先生曾构想出更新奇的几何学,他们称其为“非阿基米德(Archimedes)几何学”。他们舍弃阿基米德公理,而建立新的几何学,根据这条公理,凡以足够大的整数乘以给定的长度,最终必然超过原先给定的任何大的长度。在一条非阿基米德直线上遍布着普通几何学的点,但尚有无穷的点夹在其中,这样一来,旧派几何学家认为相邻接的两截段之间,现在就可以插入无穷多的新点。一句话,按前一章的说法,非阿基米德空间不再是二维连续统,而是三维连续统。 关于公理的本性。大多数数学家仅仅把罗巴契夫斯基几何学视为纯粹的逻辑珍品;可是,他们之中的有些人走得更远。由于许多几何学是可能的,我们的几何学肯定是真的吗?经验无疑教导我们,三角形的角之和等于两直角;但是,这是因为我们所涉及的三角形太小了;按照罗巴契夫斯基的观点,差别正比于三角形的面积;当我们计算较大的三角形时,或者当我们的测量变得更精确时,这种差别不能被感觉到吗?因此,欧几里得几何学只不过是暂定的几何学。 为了讨论这种意见,我们首先应该问我们自己,几何学公理的本性是什么? 它们是像康德(Kant)所说的先验综合判断吗? 于是,它们以如此强大的力量强加于我们,以致我们既不能设想相反的命题,也不能在其上建设理论大厦。那里不会有非欧几何学。 为了确信这一点,让我们举一个名副其实的先验综合判断,例如下述我们在第一章中已经看到它的举足轻重的作用的例子: 如果一定理对数1为真,如果业已证明,倘若它对n为真,则它对n+1亦为真,那么它将对所有的正整数都为真。 可是,企图否认这一命题而摆脱它,企图建立一种类似于非欧几何学的伪算术——那是不能做到的;乍一看,人们甚至会被诱使认为这些判断是分析的。 再者,重新谈谈我们虚构的无厚度的动物吧,我们简直不能承认,假如它们的心智像我们的一样,它们会采纳与它们的一切经验相矛盾的欧几里得几何学。 我们能够因此得出几何学公理是经验的真理的结论吗?可是,我们没有做关于理想直线或圆的实验;人们只能针对物质的客体做实验。这样一来,应该作为几何学基础的实验能够建立在什么之上呢?答案是容易的。 我们在上面已经看到,我们在不断推理时,几何图形好像固体一样起作用。因此,几何学能够从经验中借用的东西也许是这些固体的性质。光的性质及其直线传播也导致了几何学的某些性质,尤其是射影几何学的性质,以至于从这种观点看来,人们会被诱使说,度量几何学是固体的研究,而射影几何学则是光的研究。 但是,困难依然存在,而且它是难以克服的。假如几何学是实验科学,它就不会是精密科学,它就应该是继续修正的学科。不仅如此,从此以后每天都会证明它有错误,因为我们知道,没有严格的刚体。 因此,几何学的公理既非先验综合判断,亦非实验事实。 它们是约定;我们在所有可能的约定中进行选择,要受实验事实的指导;但选择依然是自由的,只是受到避免一切矛盾的必要性的限制。因此,尽管决定公设取舍的实验定律仅仅是近似的,但公设能够依然严格为真。 换句话说,几何学的公理(我不谈算术的公理)只不过是隐蔽的定义。 于是,我们想到这样一个问题:欧几里得几何学为真吗? 这个问题毫无意义。 这好比问米制是否为真,旧制是否为假;笛卡儿坐标是否为真,极坐标是否为假。一种几何学不会比另一种几何学更真;它只能是更为方便而已。 欧几里得几何学现在是、将来依然是最方便的: 1°因为它是最简单的;它之所以如此,不仅仅由于我们的心理习惯,或者由于我不知道我们对于欧几里得空间具有什么直接的直觉;它本身是最简单的,恰如一次多项式比二次多项式简单;而球面三角的公式比平面三角的公式复杂,对于不了解这些公式的几何意义的分析家来说,情况似乎依然如此。 2°因为它充分地与天然固体的性质符合,这些固体是我们的手和我们的眼睛所能比较的,我们用它们制造我们的测量工具。 [book_title]第四章 空间和几何学 让我们由一个小悖论开始。 假如存在着一种生物,具有像我们一样的心智,并且具有像我们一样的感官,但先前没有受过教育,它们能够从适当选择的外部世界中得到这样一些印象,致使它们可以构造不同于欧几里得的几何学,并能把外部世界的现象限制在非欧空间,甚或限制在四维空间。 至于我们,我们所受的教育是在我们的现实世界完成的,假使我们突然被运送到这个新世界上,我们会毫无困难地把该世界上的各种现象归诸于我们的欧几里得空间。反之,假使这些生物被运送到我们的环境中,它们可能会把我们的现象与非欧几里得空间联系起来。 情况不仅仅如此;我们只用很少气力同样能做到这一点。一个毕生专注于此的人,也许能够认清四维空间。 几何学空间与知觉空间。人们常说,外部客体的映像被局限在空间中,甚至还说,若无这一条件便不能形成映像。人们也说,这种空间因而是为我们的感觉和我们的表象准备好了的框架,它等价于几何学家的空间,它具有几何学家的空间的一切性质。 对于如此思考的所有健全的心智来说,前面的陈述必定是十分离奇的。不过,让我们看看,他们是否不受幻觉的影响,而幻觉经过比较深刻的分析是可以消除的。 首先,严格意义上所说的空间的性质是什么?我所指的空间是几何学的对象,我将称其为几何学空间。 下面是它的几个最基本的特征: 1°它是连续的; 2°它是无限的; 3°它有三维; 4°它是均匀的(homogeneous),也就是说,它的所有点都相互等价; 5°它是各向同性(isotrapic)的,也就是说,通过同一点的所有直线相互等价。 现在,把它与我们的表象和我们的感觉的框架——我可以称这个框架为知觉空间——比较一下。 视觉空间。首先考虑一个纯粹视觉的印象,它来自在视网膜末端形成的映像。 粗略的分析向我们表明,这个映像是连续的,但是只有二维;这已经有别于几何学空间,我们可以称其为纯粹视觉空间。 此外,这个映像被局限在一个有限的框架内。 最后,还有另一种并非不重要的差别:这种纯粹视觉空间不是均匀的。撇开可以在视网膜上形成的映像不谈,视网膜上的所有点并不起相同的作用。黄斑无论如何也不能认为与视网膜边缘的点等价。事实上,不仅同一客体在那里产生了更为逼真的印象,而且在每一个有限的框架内,占据框架中心的点永远也不会与接近视网膜边缘的点相同。 毋庸置疑,更为深刻的分析会向我们证明,视觉空间的这种连续性和它的二维只不过是一种幻觉;因此,它与几何学空间的差别还会更多,但是我们将不详述这个话题了。 不管怎样,视觉能使我们判断距离,从而能使我们察觉第三维。但是,每一个人都知道,为了清晰地察觉客体,这种对于第三维的察觉本身变为必须做出的调节尝试的感觉,以及必须给予双目的会聚的感觉。 这些感觉是肌肉感觉,它们完全不同于给我们以头两维概念的视觉。因此,第三维在我们看来似乎并没有起与其他两维相同的作用。所以,可以称为完备视觉空间的并不是各向同性空间。 的确,它恰恰有三维,这意味着,当我们的视觉元素(至少是结合起来形成广延概念的那些元素)中的三个已知时,它们则完全被确定;用数学的语言来说,它们将是三个独立变数的函数。 不过,让我们稍为比较仔细地审查一下这个问题吧。第三维以两种不同的方式向我们揭示出来:调节的努力和双眼的会聚。 无疑地,这两种指示总是一致的,在它们之间存在着恒定的关系,或者用数学术语来说,测量这两个肌肉感觉的两个变数在我们看来似乎不是独立的;或者,为了再次避免求助于已经精炼的数学概念,我们可以再次返回到前一章的语言,把同一事实阐述如下:如果两个会聚感觉A和B是不可区分的,则相应伴随它们的两个调节感觉A'和B'将同样是不可区分的。 但是,可以说,我们在这里有实验事实;没有什么先验的东西妨碍我们作相反的假定,如果出现相反的情况,如果这两个肌肉感觉相互完全独立,我们便不得不多计及一个独立变数,“完备视觉空间”对我们来说似乎是四维物理连续统。 我还要再说一句,我们在这里甚至有外部经验事实。没有什么东西妨碍我们假定有一种生物,它具有像我们那样的心智,拥有与我们相同的感官,它处在这样一个世界上,光只有在穿过复杂形式的反射介质后,才能到达它那里。有助于我们判断距离的两个指示不会再以恒定的关系相关联。在这样一个世界上受到它的感官训练的生物,无疑会把四维赋予完备视觉空间。 触觉空间和动觉空间。“触觉空间”比视觉空间更为复杂,而且离几何学空间更远。对于触觉,没有必要去重复我对于视觉所作的讨论。 不过,除了视觉和触觉材料外,还有其他感觉,这些感觉对于空间概念的产生同样有贡献,而且比视觉和触觉贡献更大。每一个人都知道这些;它们伴随着我们所有的动作,通常称之为肌肉感觉。 相应的框架就构成了所谓的动觉空间。 每一肌肉都会产生一种特殊的、能够增加或减少的感觉,以至于我们肌肉感觉的总和将取决于与我们具有的肌肉同样多的变数。从这种观点来看,我们具有的肌肉有多少,动觉空间就有多少维。 我知道人们会说,如果肌肉感觉有助于形成空间概念,那是因为我们感觉到每一动作的方向,它成为感觉的一个组成部分。如果情况如此,如果肌肉感觉在不伴随这种几何学的方向感觉就不能产生,那么几何学空间确实就是强加给我们感觉的一种形式。 但是,当我分析我的感觉时,我丝毫也没有觉察这一点。 我所看到的是相应于在同一方向动作的感觉,它们在我的心智中仅仅通过观念联想而结合。正是这种联想,我们称之为“方向感觉”,它是可以还原的。因此,这种感受不能在单一的感觉中找到。 这种联想极其复杂,因为根据四肢的位置,同一肌肉的收缩可以对应于十分不同的方向的运动。 而且,这种联想显然被得到了;像所有的观念联想一样,它也是习惯的结果;这种习惯本身是由许多经验引起的;毫无疑问,如果我们的感官训练是在不同的环境中完成的,在那里我们会受到各种不同印象的影响,那就必然产生相反的习惯,我们的肌肉感觉就可能会按照其他规律联想。 知觉空间的特征。由此可见,在视觉、触觉和动觉这三种形式之下的知觉空间本质上与几何学空间不同。 它既不是均匀的,也不是各向同性的;人们甚至不能说它有三维。 人们常说,我们把我们外部知觉的客体“投影”于几何学空间;我们把它们“局限”起来。 这有意义吗?若有,其意义又是什么? 这意味着我们在几何学空间想象外部客体吗? 我们的表象只是我们感觉的复制品;因此,它们只能和这些感觉排列在同一框架内,也就是说,排列在知觉空间内。 正如画家不能在平面画布上画出具有三维的客体一样,我们也不能在几何学空间中想象外部物体。 知觉空间仅仅是几何学空间的映像,映像由于一种透视而改变了形状,我们只能通过把对象纳入透视法则来想象它们。 因此,我们无法在几何学空间中想象外部物体,而我们可以就这些物体推理,犹如它们处在几何学空间中一样。 其次,当我们说我们把如此这般的客体“局限”在空间的如此这般的点,这意味着什么呢? 这仅仅意味着,我们想象为了达到那个客体所必要的动作;人们可能不这样说:为了想象这些动作,必须把动作本身投影在空间,从而空间概念必须预先存在。 当我说我们想象这些动作时,我只是意指我们想象伴随它们的肌肉感觉,这些肌肉感觉没有一点几何学的特征,从而根本不隐含空间概念预先存在的意思。 状态变化和位置变化。可是,有人会说,如果几何学空间的观念没有强加于我们的心智,另一方面,如果我们的感觉没有一个能够提供这个观念,那么它是怎样产生的呢? 这是我们现在必须考察的问题,这需要花费一些时间,不过我能够用几句话概述一下我就其所提出的尝试性说明。 我们的感觉若孤立起来,没有一个能够使我们产生空间观念;我们只有研究这些感觉相继据以发生的规律,才能被导向这个观念。 我们首先看到,我们的印象易于变化;但是在这些变化中,我们确定,我们马上就可以做出区分。 在一个时期我们说,产生这些印象的客体改变了状态,在另一个时期我们说,它们改变了位置,仅仅使它们发生位移。 不管一个对象改变它的状态,还只是改变它的位置,在我们看来,这总是以相同的方式解释的:由于印象集合的改变。 可是,我们怎样被引导去区别这二者呢?这是很容易阐明的。如果只有位置变化,我们就能够做出某些动作恢复初始的印象集合,这些动作使我们在对面把运动的客体置于同一相对位置。从而,我们矫正所发生的改变,我们通过相反的改变重建初始状态。 例如,如果是视觉的问题,如果客体在我们眼前改变它的位置,那么我们能够“用眼睛追踪它”,通过眼球的适当动作,保持它的映像在视网膜的同一点。 这些动作之所以被我们意识到,因为它们是由主观意志所控制的,因为肌肉感觉伴随着它们,但是这并不意味着我们在几何学空间想象它们。 这样一来,表示位置变化特性的东西,把位置变化与状态变化区别开来的东西,就是位置变化能够用这种方法加以矫正。 因此,我们从印象总和A到印象总和B,正好有两种不同的途径: 1°不受主观意志控制而且不经受肌肉感觉;当它是改变位置的客体时,便发生这种情况; 2°受主观意志控制而且伴随肌肉感觉;当客体不动而我们相对于客体做相对运动时,便发生这种情况。 果真如此,从印象总和A到印象总和B仅仅是位置变化。 由此可知,若不借助于“肌肉感觉”,则视觉和触觉不能给我们以空间概念。 这个概念不仅不能从单一的感觉得到,甚或不能从感觉系列得到,而且,不可动的生物从来也不可能获得空间概念,因为它不能通过它的动作矫正外部客体位置变化的结果,从而没有理由把位置变化和状态变化区别开来。如果它的运动是不受意志控制的,或者没有任何感觉相伴随,它也不能获得空间概念。 补偿的条件。有一种补偿能使两个在其他方面相互独立的变化彼此矫正,像这样种类的补偿怎么是可能的? 已经熟悉几何学的心智会如下推理:显然,如果存在补偿,那么以外部客体的各部分为一方,以各种感觉器官为另一方,都必须在两种变化之后处于同一相对位置。为此,在这种情况下,外部客体的各部分同样必须相互之间保持同一相对位置,我们身体的各部分相互之间也必须如此。 换句话说,在第一种变化中,外部客体必须像刚体那样移动,在矫正第一种变化的第二种变化中,它也必须随着我们整个身体像刚体那样移动。 在这些条件下,补偿可以发生。 但是,由于我们还没有形成空间概念,迄今我们对几何学还一无所知,因此我们不能这样推理,我们不能先验地预见补偿是否可能。不过,经验告诉我们,补偿有时会发生,而且正是根据这一实验事实,我们才开始把状态变化与位置变化区别开来。 固体和几何学。在周围的客体中,存在着一些经常经受位移的客体,这些位移同时易于受到我们自己身体的相关动作的矫正;这些客体就是固体。其他形状可变的客体,仅仅例外地经受同样的位移(位置变化而不是形状变化)。当一个物体改变其位置和其形状时,我们不再能够用适当的动作使我们的感官相对于这个物体返回到同一位置;从而,我们不再能够重建整个原始印象。 只是到后来,作为新经验的结果,我们才学会如何把可变形的物体分解为较小的部分,致使每一部分几乎按照与固体相同的规律移动。就这样,我们把“形变”与其他状态变化区别开来;在这些形变中,每一部分仅仅经受了能够加以矫正的位置变化,但是它们的集合所经受的改变却更为深刻,而且不易受相关动作的矫正。 这样的概念已经十分复杂,它必然在比较晚的时候才能出现;而且,如果固体的观察未曾告诉我们区别位置变化,这个概念也不能产生。 所以,假使在自然界没有固体,那么便不会有几何学。 另一种议论也值得注意一下。设一固体相继占据位置α和β;它在第一个位置,使我们感受到印象总和A,在第二个位置,使我们感受到印象总和B。现在,设有第二个固体,它具有与第一个固体完全不同的性质,例如颜色不同。设它从位置α移到位置β,它在α时使我们感受到印象总和A',在β时使我们感受到印象总和B'。 一般说来,总和A与总和A'毫无共同之处,总和B与总和B'亦然。因此,从总和A到总和B,以及从总和A'到总和B'的转变,一般而言是本身毫无共同之处的两种变化。 可是,我们认为这两种变化是位移,而且我们认为它们是相同的位移。情况怎么能够是这样呢? 这仅仅是因为,它们二者能够受到我们身体同一相关动作的矫正。 所以,“相关动作”构成了两个现象之间的唯一关联,否则,我们永远也不会梦想把它们联系起来。 另一方面,我们身体由于有许多关节和肌肉,因而可以做出各种不同的动作;但是,所有动作都不能“矫正”外部客体的变动;只有我们的整个身体,或者至少我们起作用的感官作为一个整体移动时,即它们的相对位置不变或以固体那样移动时,这样的动作才能矫正外部客体的变动。 让我们概括一下: 1°首先我们可以区分两种现象范畴: 一些是不受主观意志控制的、不伴随肌肉感觉的,我们把它们归诸于外部客体;这些是外部变化; 另一些在性质上恰恰相反,我们把它们归诸于我们自己身体的动作,这些是内部变化。 2°我们注意到,这些范畴每一个的某些变化可以受到另一范畴相关变化的矫正。 3°在外部变化中,我们区分出与另一范畴相关的变化;我们称这些变化为位移;同样,在内部变化中,我们区分出与第一个范畴相关的变化。 由于这种相关性,我们称之为位移的现象的特殊类别就被这样定义了。 这些现象的规律构成几何学的对象。 均匀性定律。在这些规律中,第一个就是均匀性定律。 设由于外部变化α,我们从印象总和A到印象总和B,接着这一变化α受到相关的、由主观意志控制的动作β的矫正,于是我们恢复到总和A。 现在,设另一个外部变化α'使我们重新从总和A到总和B。 经验告诉我们,这个变化α'像α一样,也易受相关的、由主观意志控制的动作β'的矫正,这个动作β'与矫正α的动作β相应于同样的肌肉感觉。 这个事实通常被说成是:空间是均匀的和各向同性的。 也可以说,一个动作一旦产生之后,它可以第二次、第三次地重复,如此等等,而它的特性却保持不变。 在第一章,我们讨论了数学推理的本性,我们看到必须赋予无限地重复同一操作的可能性以重要意义。 数学推理正是从这种重复中获得它的威力的;因此,正是由于均匀性定律,它才把支撑点放在几何学事实上。 为完备起见,除均匀性定律外,还应当添加许多其他类似的定律,我不愿讨论其中的细节,但是数学家用一句话把它们概括为下述说法:位移形成“一个群”。 非欧几里得世界。如果几何学空间是强加在我们每一个单独考虑的表象上的框架,那么就不可能拆除这个框架来想象映像,而且我们也丝毫不能改变我们的几何学。 然而,情况并非如此;几何学只不过是这些映像前后相继的规律的概要。于是,没有什么东西妨碍我们想象一系列表象,这些表象在各方面与我们通常的表象类似,但前后相继的规律不同于我们习惯的规律。 其次,我们能够设想在这些定律遭到倾覆的环境中接受教育的生物,它们必定具有与我们截然不同的几何学。 例如,假定有一个用大球面包围起来的世界,它服从下述定律: 温度不是均匀的;在中心温度最高,随着距中心距离的增大,温度成比例地减小,当接近包围这个世界的球面时,温度降至绝对零度。 让我再把这个温度变化的规律更精确地说明一下:设R是有限球面的半径;设r是所考虑的点到这个球面中心的距离。绝对温度将与R2-r2成比例。 我将进而假定,在这个世界上,一切物体都具有同一膨胀系数,从而任何量尺的长度都与它的绝对温度成比例。 最后,我将假定,一物体从一点转移到温度不同的另一点后,它能立即与新环境处于热平衡。 在这些假设中,丝毫没有什么是矛盾的或不可想象的。 于是,一个可动客体越接近有限球面,它会成比例地愈变愈小。 首先要注意,从我们通常的几何学的观点来看,尽管这个世界是有限的,但是对于这个世界的居民来说,它似乎是无限的。 事实上,当这些居民试图接近有限球面时,它们逐渐变冷,而且变得愈来愈小。因此,它们迈出的步子也愈来愈小,结果它们永远也不能到达有限球面。 对于我们来说,如果几何学只是研究刚体运动的规律的话,那么对这些假想的生物而言,几何学将研究我刚刚说过的因温度差而变形的固体的运动规律。 毫无疑问,在我们的世界上,由于或热或冷,天然固体同样经受形状和体积的变化。但是,在奠定几何学的基础时,我们忽略了这些变化,因为除了这些变化微乎其微外,它们也不规则,从而在我们看来似乎是偶然的。 在我们假设的世界上,情况不再是这样,这些变化遵循规则的、十分简单的定律。 而且,组成这个世界的居民的身体之各固体部分会经受同样的形状变化和体积变化。 我还要作另外的假设;我将假定,光通过各种折射媒质传播,而且折射率与R2-r2成反比。很容易看到,在这些条件下,光线不可能是直线的,而是圆形的。 为了证明前面所说的是正当的,在我看来依然是要表明,外部客体位置的某些变化能够被居住在这个想象世界上的有知觉生物的相关动作矫正,用这种方式来恢复这些有知觉生物体验过的原始印象的集合。 事实上,假定一客体被移动,同样经受了形变,它不像刚体,而像与上面假定的温度定律严格一致的固体那样经受了不相等的膨胀。为简洁起见,请容许我把这样的运动叫做非欧几里得位移。 假如一个有知觉的生物恰恰在附近,它的印象将被该客体的位移所改变,但是它能够通过以合适的方式运动而重建这些印象。只要最后该对象和被视为单一个体的有知觉的生物之集合经受了一种特殊位移就足够了,我刚才把这种位移叫做非欧几里得位移。倘若假定这些生物的四肢与它们居住的世界的其他物体按照同一规律膨胀,那么这就是可能的。 从我们通常的几何学的观点来看,尽管物体在这种位移中发生了形变,而且它们的各部分不再处于同一相对位置,不过我们将看到,有知觉的生物的印象再次变成相同的了。 事实上,虽然各部分的相互距离可以改变,但是原来接触的部分又处于接触。因此,触觉印象没有变化。 另一方面,考虑到上面关于光线的折射和曲率所作的假设,则视觉印象也依然相同。 因此,这些假想的生物像我们一样,可以把它们目睹的现象进行分类,也可以在这些现象中区分出易于通过相关的、由主观意志支配的动作而矫正“位置变化”。 假使它们构造几何学,将不会像我们那样研究刚体的运动;它们的几何学将研究它们将如此区分的位置变化,这种变化无非是“非欧几里得位移”;它们的几何学将是非欧几何学。 这样一来,像我们自己一样的生物,由于在这样一个世界受教育,它们不会有与我们相同的几何学。 四维世界。正如我们能够想象非欧几里得世界一样,我们也能够想象四维世界。 视觉——即使用一只眼睛——和与眼球运动有关的肌肉感觉一起,便足以告诉我们三维空间。 外部客体的映像描绘在作为二维画布的视网膜上;它们是透视图。 但是,因为眼睛和客体是可动的,所以我们依次看到从不同的视点得到的同一物体的各种透视图。 同时,我们发现,从一个透视图到另一个透视图的转换常常伴随着肌肉感觉。 如果从透视图A到透视图B的转换以及从透视图A'到透视图B'的转换,伴随着同样的肌肉感觉,我们把它们相互比拟为同一性质的操作。 其次,研究一下这些操作结合在一起的规律,我们认识到,它们形成一个群,这个群的结构与刚体运动的结构相同。 现在,我们看到,正是从这个群的特性,我们引出了几何学空间的概念和三维的概念。 这样一来,我们明白了三维空间的观念如何能够从这些透视图的展演中产生出来,尽管它们中的每一个仅仅是两维的,这是由于它们按照某些规律相互跟随。 好了,正如三维图形的透视图能够做在平面上一样,我们也能够把四维图形的透视图做在三维(或二维)的图画上。对于几何学家来说,这只不过是儿戏而已。 我们甚至能够从许多不同的视点对同一图形做出许多透视图。 我们能够想象这些透视图,由于它们只有三维。 试设想一下同一客体的各个透视图依次相继出现,从一个到另一个的转换伴随着肌肉感觉。 当这些转换中的两个与相同的肌肉感觉联系时,我们当然要把二者看做是两个相同性质的操作。 其次,没有什么东西妨碍我们设想,这些操作按照我们选择的任何定律结合,例如为了形成一个与四维刚体运动具有同一结构的群。 在这里,没有什么是不可图示的,但是,这些感觉恰恰是那些具有二维视网膜又能在四维空间里运动的生物所感受到的感觉。在这种意义上,我们可以说,第四维是可以想象的。 按这样的方式,不可能表示我们在前一章讲过的希尔伯特空间,因为这个空间已不是二维连续统。所以,它与我们平常的空间大相径庭。 结论。我们看到,在几何学的起源中,经验起着必不可少的作用;但是,如果由此得出几何学是——即使部分的是——实验科学的结论,那可就错了。 假如几何学是实验科学,那它只能是近似的和暂定的。多么粗糙的近似啊! 几何学只可能是研究固体的运动;但是实际上,它并不是用来从事天然固体的研究,它把某些绝对刚性的理想固体作为对象,这些理想固体只不过是天然固体的一种简化的和相差很远的图像。 这些理想固体的概念来自我们心智的所有构成要素,经验只不过是导致我们从这些构成要素中产生这一概念的诱因。 几何学的对象是研究特殊的“群”;不过,一般的群概念在我们的心智预先存在着,至少是潜在地存在着。它不是作为我们感性(sense)的形式,而是作为我们知性(understanding)的形式强加给我们。 在所有可能的群中,必须选择出的可以说只是标准的群,我们将把自然现象提交给它。 在这一选择中,经验指导我们,而没有把它强加给我们;经验没有告诉我们哪一个是最真实的几何学,而是告诉我们哪一个是最方便的几何学。 要注意,我没有放弃使用通常几何学的语言,也能描述上面设想的奇异的世界。 事实上,即使我们迁移到那个世界,我们也不必改变语言。 在那里受教育的生物无疑会发现,创造一种不同于我们的、更好地适应它们印象的几何学是比较方便的。至于我们,面对同一印象,可以肯定地说,我们会发现不改变我们的习惯是比较方便的。 [book_title]第五章 经验和几何学 1. 在前文中,我已经花了大量时间力图证明,几何学原理不是实验的事实,尤其是欧几里得的公设不能用实验来证明。 不管已经给出的理由在我看来是多么具有决定性,我认为还应该强调这一点,因为在这里,虚假的观念在许多人的头脑中是根深蒂固的。 2. 如果我们用材料制作一个圆圈,测量它的半径和周长,并看到这两个长度之比等于π,那么我们想做什么呢?我们想做我们用来制造这个圆形东西的物质的特性的实验,以及用来制造量尺的物质的特性的实验。 3. 几何学和天文学。问题也可以以另一种方式提出。如果罗巴契夫斯基几何学是真实的,那么十分遥远的恒星的视差将是有限的;如果黎曼几何学是真实的,视差将是负的。这些似乎是在实验所及的范围内的结果,可以期望,天文观察能使我们在三种几何学之间做出抉择。 但是,在天文学中,直线只是意味着光线的路径。 因此,如果发现了负视差,或者证明了一切视差都大于某一极限,那么两条道路向我们敞开着;我们既可以放弃欧几里得几何学,也可以修正光学定律,假定光严格说来不是以直线传播的。 不用多说,所有的世界都会认为后一种解决办法比较有利。 因此,欧几里得几何学一点也不害怕新颖的实验。 4. 某些现象在欧几里得空间是可能的,而在非欧几里得空间则不可能,以致经验在确立这些现象时便与非欧几里得假设直接矛盾,这种见解站得住脚吗?就我的本分而言,我没有思索这样一个能够被提出的问题。按照我的意见,它正好等价于下述问题,其荒谬程度在所有的人看来都是一目了然的:存在着用米和厘米可以表示的长度,但却不能用、英尺和英寸来测量,以致当经验弄清这些长度存在时,它却直接与标度为六英尺的假设相矛盾吗? 比较仔细地考察一下这个问题吧。我假定,直线在欧几里得空间具有任何两种特性,我将称其为A和B;在非欧几里得空间,它还具有特性A,但不再具有特性B;最后,我假定,在欧几里得空间和非欧几里得空间中,直线只是具有特性A的线。 果真如此,经验就能够在欧几里得的假设和罗巴契夫斯基的假设之间做出裁决了。结果查明,能用实验检验的一个确定的具体的客体——例如一束光线——具有特性A;我们便可以断定,它是直线,接着我们再研究它是否具有特性B。 然而,情况并非如此;没有一种特性像特性A那样,能够作为一种绝对标准使我们辨认直线以及区分直线和其他每一种线。 例如,我们是否可以说:“这样的特性如下:直线是这样一种线,即就是使包含该线的图形能够运动,而该图形各点的相互距离不变,从而这个线上的所有点依然是固定的?” 事实上,这就是在欧几里得空间或非欧几里得空间中属于直线、且唯一属于直线的特性。但是,我们怎样用实验来弄清它是否属于这个或那个具体对象呢?这就必须测量距离,可是人们怎么会知道,我用材料做成的仪器所测量的任何具体大小实际上表示的是抽象的距离呢? 我们只不过是把困难向后推了一下而已。 其实,我刚才说过的特性不仅仅是直线的特性,它是直线和距离二者的特性。为了把它作为绝对标准,我们不仅必须能够确立,除直线和距离之外,它不属于任何线,而且还必须能够确立,它不属于直线之外的线以及不属于距离之外的数量。不过,这是不正确的。 因此,不可能设想一种能够在欧几里得体系加以诠释、而在罗巴契夫斯基体系不能加以诠释的具体实验,于是我可以得出结论: 经验在任何时候都不会与欧几里得公设矛盾;另一方面,任何经验永远也不会与罗巴契夫斯基公设矛盾。 5. 但是,欧几里得(或非欧几里得)几何学永远不能直接与实验矛盾,这还是不够的。它能够与经验一致,只是因为违背了充足理由律和空间相对性原理,这种状况不可能发生吗? 我愿自我说明一下:考虑任何一个物质系统;一方面,我必须注意这个系统各物体的“状态”(例如,它们的温度,它们的电势等等),另一方面,必须注意它们在空间的位置;而且,在能使我们规定这个位置的数据中,我们将把规定这些物体相对位置的相互距离与规定该系统绝对位置和它在空间的绝对取向的条件区别开来。 在这个系统中将要发生的现象的规律取决于这些物体的状态和它们的相互距离;但是,因为空间的相对性和无源性,它们将不依赖该系统的绝对位置和取向。 换句话说,物体在任何时刻的状态和它们的相互距离仅取决于这些同样的物体在初始时刻的状态和它们的相互距离,但是完全不依赖该系统的绝对初始位置和绝对初始取向。简而言之,这就是我所命名的相对性定律。 迄今,我是作为一个欧几里得几何学家讲话。正如我已经说过的,无论什么经验,都容许按照欧几里得假设进行诠释;但是,它同样容许按照非欧几里得假设进行诠释。好了,我们做了一系列实验;我们根据欧几里得假设诠释它们,而且我们认出,这些如此诠释的实验没有违背这个“相对性定律”。 我们现在根据非欧几里得假设诠释它们:这总是可能的;在这个新诠释中,只有不同物体的非欧几里得距离一般将不同于原来诠释中的欧几里得距离。 以这种新方式诠释的实验还会与我们的“相对性定律”一致吗?如果不存在这种一致,我们也没有权利说经验证明了非欧几里得几何学的谬误吗? 很容易看到,这是杞人忧天;事实上,为了十分严格地使用相对性定律,必须把它应用到整个宇宙。这是因为,如果仅仅考虑这个宇宙的一部分,如果这部分的绝对位置恰恰改变了,那么它与宇宙其他物体的距离同样也会改变,因而这些物体对所考虑的宇宙部分的影响便会增大或减小,这就要修正在那里发生的现象的定律。 可是,假如我们的系统是整个宇宙,那么经验便不能给出它在空间的绝对位置和取向的信息。不管我们的仪器多么完善,它们能够告诉我们的一切将是宇宙各部分的状态和它们的相互距离。 于是,我们的相对性定律可以阐述如下: 在任何时刻,我们根据我们的仪器能够得到的读数,将仅仅依赖于我们根据同一仪器在初始时刻能够得到的读数。 现在,这样一种阐述与实验事实的每一种诠释无关。如果定律在欧几里得诠释中为真,那么它在非欧几里得诠释中亦为真。 请容许我在这里插一点话。我在上面已说过规定系统各个物体的位置的数据;我同样要说规定它们的速度的数据;我接着必须把各个物体相互距离变化的速度区别开来;另一方面,必须区别系统的平动速度和转动速度,也就是它的绝对位置和取向变化的速度。 为了使心智十分满意,相对性定律可以这样表达: 物体在任何时刻的状态和它们的相互距离,以及这些距离在同一时刻变化的速度,将仅仅取决于这些物体在初始时刻的状态和它们的相互距离以及这些距离在初始时刻变化的速度,但是它们既不依赖于系统的绝对初始速度,也不依赖于它的绝对取向,还不依赖于绝对位置和取向在初始时刻变化的速度。 不幸的是,这样阐述的定律与实验不符,至少是在这些实验按通常那样诠释时。 设把一个人运送到总是阴霾密布的行星上,以致他永远也看不到其他恒星;他生活在这个行星上,仿佛行星在空间中是孤立的一样。不过,这个人既可以通过测量行星的扁率(通常借助于天文观察来完成,但也能够借助于纯粹的大地测量方法),也可以重做傅科(Foucault)摆实验,从而可以意识到行星转动。因此,这个行星的绝对转动便变得很明显。 这是一个使哲学家震惊的事实,但是物理学家却不得不接受它。 我们知道,牛顿从这一事实中推断出绝对空间的存在;我自己完全不能采纳这一观点。我将在第三编开始研讨其中的缘由。我暂且不打算说明这个难题。 因此,在阐述相对性定律时,我们必须听任把规定物体状态数据中的各种速度包括在内。 无论如何,这个困难对于欧几里得几何学与对于罗巴契夫斯基几何学也许都是一样的;因此,我不需要为此而烦恼,我只是顺便提到它。 重要的是这个结论:实验不能在欧几里得几何学和罗巴契夫斯基几何学之间做出裁决。 总而言之,无论我们从哪一方面进行考察,都不可能在几何学经验主义中发现合理的意义。 6. 实验只不过告诉我们物体相互之间的关系;至于物体与空间的关系,或者空间各部分的相互关系,没有一个实验影响或能够影响。 “是的,”你回答说:“单一的实验是不够的,因为它只能给我一个带有许多未知数的方程,可是当我作了足够的实验后,我就有了足以计算所有未知数的方程。” 知道船的主桅的高度还不足以计算船长的年龄。当你测量了船上每一块木头,你就会得到许多方程,可是你还不能更清楚地了解他的年龄。你所测量的一切仅仅与木块有关,它们只能向你揭示与这些木块有关的东西。正是这样,你的实验无论多么多,它们只是影响到物体相互之间的关系,而丝毫也不能向我们揭示空间各部分的相互关系。 7. 你又要说,如果实验与物体有关,那么它们至少与物体的几何学特性有关吗?可是,首先一个问题是,你是如何理解物体的几何学特性呢?我假定它就是物体与空间的关系问题;因此,这些特性是只涉及到物体相互之间关系的实验所无法达到的。仅仅这一点就足以表明,不可能存在这些特性的问题。 还是让我们从理解物体的几何学特性这个词语的意义开始吧。当我说一个物体由若干部分组成时,我假定我在其中没有陈述几何学特性,即使我同意把我认为最小的部分不恰当地称之为点,这依然是对的。 当我说,某一物体的某一部分与另一物体的某一部分接触时,我阐述了关于这两个物体相互关系的命题,而没有阐述它们与空间关系的命题。 我假定你将承认我的观点,即这一切并不是几何学特性;我至少确信,你将承认我所说的,即这些特性与度量几何学的全部知识无关。 预先假定了这一点后,我设想我们有一个固体,它是由共同连接在一个端点O上的八根细铁棒OA,OB,OC,OD,OE,OF,OG,OH构成的。此外,设我们有第二个物体,例如一块用三个小墨点标记的木块,我称其为α,β,γ。我进一步假定,已弄清αβγ可以与AGO接触(我意指α与A,β与G,γ与O同时接触),然后我可以相继使αβγ与BGO,CGO,DGO,EGO,FGO,接触,其次与AHO,BHO,CHO,DHO,EHO,FHO接触,接着使αγ与AB,BC,CD,DE,EF,FA相继接触。 这些是我们在预先没有任何空间形式或空间度量特性概念的情况下就可以做出的决定。它们决不涉及“物体的几何学特性”。如果物体用与罗巴契夫斯基群相同结构的群(我意指按照与罗巴契夫斯基几何学中的固体相同的定律)的运动做实验,那么这些决定将是不可能的。因此,它们足以证明,这些物体按照欧几里得群运动,或者至少物体不按照罗巴契夫斯基群运动。 显而易见,这些决定与欧几里得群一致。这是因为,这些决定能够在下述条件下做出:如果物体αβγ是我们通常几何学的呈现为直角三角形形式的刚体,如果点ABCDEFGH是多面体的顶点,而多面体又是由我们通常几何学的两个正六棱锥形成的,且具有公共底面ABCDEF,其一顶点为G,另一顶点为H。 现在假定,在代替前面的决定时可以注意到,如上所述的αβγ能够依次用于AGO,BGO,CGO,DGO,EGO,AHO,BHO,CHO,DHO,EHO,FHO,然后αβ(而不再是αγ)能够依次用于AB,BC,CD,DE,EF和FA。 如果非欧几何学是真实的,如果物体αβγ和OABCDEFGH是刚体,如果第一个物体是直角三角形而第二个物体是适当维数的对顶正六棱锥,那么这些就是可以做出的决定。 因此,如果物体按照欧几里得群运动,那么这些新决定是不可能的;但是,如果假定物体按照罗巴契夫斯基群运动,那么它们就变得可能了。因此(如果人们做出了它们),它们就足以证明,上述物体不能按照欧几里得群运动。 就这样,即使不就空间的形式、空间的本性、物体和空间的关系做任何假设,即使不赋予物体以任何几何学特性,我也获得了观察资料,能够使我证明,在一种情况下物体用其结构是欧几里得群的运动,在另一种情况下物体用其结构是罗巴契夫斯基群的运动。 而且,人们不能说,决定的第一个集合构成了证明空间是欧几里得空间的实验,决定的第二个集合构成了证明空间是非欧几里得空间的实验。 事实上,人们能够想象(我说想象),如此运动的物体使第二组决定成为可能的。其证据在于,第一流的技工,只要他愿意卖力花钱,就能制造这样的物体。可是,你不要由此得出结论,说空间是非欧几里得空间。 不仅如此,虽然技工制造出我刚才所说的奇怪的物体,但是因为普通物体继续存在,所以有必要得出结论说,空间同时是欧几里得空间和非欧几里得空间。 例如,假定我们有一个半径为R的大球面,温度从这个球的中心到球表面按照我在描述非欧几里得世界时所讲过的规律减小。 我们可以有这样的物体,其膨胀可以忽略不计,其行为像通常的刚体一样;另一方面,我们也可以有膨胀率很大的物体,其行为像非欧几里得固体。我们可以有两个对顶棱锥OABCDEFGH和O'A'B'C'D'E'F'G'H'以及两个三角形αβγ和α'β'γ'。第一个对顶棱锥是直线的,而第二个是曲线的;三角形αβγ是用不会膨胀的物质做成的,而另一个则是用极易膨胀的物质做成的。 于是,用对顶棱锥OAH和三角形αβγ就可以获得第一批观察资料,用对顶棱锥O'A'H'和三角形α'β'γ'就可以获得第二批观察资料。这样一来,实验似乎先证明欧几里得几何学为真,接着又证明它为假。 因此,实验与空间无关,而与物体有关。 补遗 8. 为使内容完备起见,我应当谈一个十分棘手的问题,这也许需要太长的篇幅;在这里,我只想概括地介绍一下我在《形而上学和道德评论》和《一元论》杂志中详述过的东西。当我说,空间有三维,我们意味着什么呢? 我们已经看到我们的肌肉感觉向我们揭示的那些“内部变化”的重要性。它们可以用来表征我们身体的各种姿势的特征。任取这些姿势中的一个A作为起点,当我们从这个初始姿势到任何一个其他的姿势B时,我们感觉到一个肌肉感觉系列,这个系列S将确定B。不管怎样,让我们注意一下,我们常常会把两个系列S和S'视为确定了同一姿势B(由于初始姿势A和最终姿势B依然相同,中间姿势和相关感觉可以不同)。可是,我们将如何辨认这两个系列等价呢?因为它们可以用来补偿同一外部变化,或者更一般地说,因为当这是一个补偿外部变化的问题时,一个系列能够被另一个代替。在这些系列中,我们区分出仅有它们自己就能够补偿外部变化的系列,我们称其为“位移”。因为我们不能在两个十分接近的位移之间做出区分,所以这些位移的总和就呈现出物理连续统的特征;经验告诉我们,它们是六维物理连续统的特征;但是,我们还不知道空间本身有多少维,我们首先必须解决另一个问题。 空间的点是什么?每一个人都认为他了解这个问题,可是那是幻觉。当我们试图想象空间的点时,我们看到的只是白纸上的黑点、黑板上的白斑,这总是一个东西。因此,该问题应当如下理解: 当我说,客体B处于客体A刚才所占据的同一点时,我意指什么呢?或者更进一步,是什么标准将使我领悟这一点呢? 我意味着,虽然我没有移动(这是我的肌肉感觉告诉我的),可是我的第一个手指刚才接触了客体A,现在却接触着客体B。我可以用其他标准;例如另一个手指或视觉。但是,第一个标准是充分的;我知道,如果它回答是,那么所有其他标准将给出同一回答。我是通过经验知道它的,我不能先验地知道它。由于同一理由,我说触觉不能超距地进行;这是阐述同一实验事实的另一种方式。相反地,若我说视觉可以超距地起作用,则其意指当其他标准回答否时,视觉提供的标准可以回答是。 事实上,客体虽然离开了,可是它可以在视网膜的同一点形成它的映像。视觉回答是,因为客体依然停留在同一点,触觉回答否,是因为我刚才接触客体的手指现在不再接触它了。如果经验向我们表明,当另一个手指说否时,一个手指可以回答是,那么我们同样应该说,触觉超距地起作用。 简而言之,对于我的身体的每一个姿势,我的第一个手指确定一点,正是此而且唯有此,才规定了空间的一点。 这样一来,一个点对应于各自的姿势;但是,常常也出现这种情况,同一点却有若干不同的姿势相对应(在这种情况下,我们说我们的手指没有移动,但身体的其余部分却运动了)。因此,我们在姿势变化中区分出手指没有在那里移动的姿势变化。我们是怎样被引导到这儿的?是因为我们常常注意到,在这些变化中,与手指接触的客体依然与手指接触着。 因此,借助于我们这样区分的变化之一,让我们把所有能够从每一个其他姿势得到的所有姿势归入同一类。空间的同一点将对应于该类的所有资料。所以,一点将对应于各自的类,而一类将对应于各自的点。可是,人们可以说,经验达到的不是点,而是这个变化类,或者更恰当地讲,是肌肉感觉的对应类。 而且,当我们说空间有三维,我们仅仅意味着,这些类的总和在我们看来似乎具有三维物理连续统的特征。 人们可能被诱导得出结论说,正是经验告诉我们空间有多少维。但是,实际上,在这里我们的经验也与空间无关,而与我们的身体以及我们的身体和邻近的客体的关系有关。而且,我们的经验是极其粗糙的。 在我们的心智中,预先存在着一定数目的群的潜在观念——李已经提出了群论。我们将选择哪一个群,以便用它作为一种比较自然现象的标准呢?而且,这个群选定之后,我们将采用它的哪一个子群来表征空间点的特征呢?经验通过向我们表明哪一种选择本身最适合于我们身体的特性来指导我们。但是,它的作用仅限于此。 祖传的经验 常常有人说,如果个人的经验不能够创造几何学,那么对于祖传的经验而言情况则不然。但是,这意味着什么呢?这意味着我们不能用实验证明欧几里得公设,而我们的祖先却能做到这一点吗?一点也不。这意味着,通过自然选择,我们的心智本身适应了外部世界的条件,它采用了对于人种来说最有利的几何学,或者换句话说,最方便的几何学。这与我们的结论完全相符;几何学不是真实的,它是有利的。 [book_chapter]第三编 力 [book_title]第六章 经典力学 英国人把力学当做实验科学来讲授;在大陆,力学总是或多或少地被作为演绎的和先验的科学来讲述。不言而喻,英国人是正确的;可是,其他方法为何能够坚持得如此长久呢?为什么大陆学者企图摆脱他们的前辈的惯例,可是总是不能完全获得自由呢? 另一方面,假使力学原理只是起源于实验,那么它们因此只不过是近似的和暂定的吗?在某一天不会有新实验导致我们修正甚或抛弃它们吗? 这是很自然地强加在它们之上的疑问,解答的困难主要出自下述事实:有关力学的专著没有明确区分什么是实验、什么是数学推理、什么是约定、什么是假设。 这并非问题的全部: 1°没有绝对空间,我们能够设想的只是相对运动;可是通常阐明力学事实时,仿佛绝对空间存在一样,而把力学事实归诸于绝对空间。 2°没有绝对时间;说两个持续时间相等是一种独自毫无意义的主张,只有通过约定才能获得意义。 3°不仅我们对两个持续时间相等没有直接的直觉,而且我们甚至对发生在不同地点的两个事件的同时性也没有直接的直觉:我在“时间的测量” [1] 一文中已说明了这一点。 4°最后,我们的欧几里得几何学本身只不过是一种语言的约定;力学事实是可以根据非欧几里得空间阐述的,非欧几里得空间虽说是一种不怎么方便的向导,但它却像我们通常的空间一样合理;阐述因而变得相当复杂,但是它依然是可能的。 于是,绝对空间、绝对时间、几何学本身并不是强加在力学上的条件;就像法语在逻辑上并不先于人们用法语表述的真理一样,所有这一切东西也不先于力学。 我们可能试图用与所有这些约定无关的语言来阐述力学的基本定律;于是,我们无疑会更清楚这些定律本身是什么;这是昂德拉德(Andrade)先生在他的《力学物理学教程》中试图去做的东西,至少是部分地试图去做的东西。 这些定律的阐述当然变得相当复杂,因为正是为了节略和简化这一阐述,人们才特意发明了这一切约定。 至于我,除了涉及绝对空间外,我将把这一切困难置之脑后;并不是我没有意识到它们,绝非如此;要知道,我在本书的头两编已充分地考察了它们。 因此,我将暂且承认绝对空间和欧几里得几何学。 惯性原理。不受力作用的物体只能做匀速直线运动。 这是先验地强加在心智上的真理吗?假若如此,希腊人为何没有认出它呢?他们怎么会相信,当产生运动的原因中止,运动也就停止呢?或者,他们怎么会相信,每一物体若无阻碍,将做最高贵的圆周运动呢? 如果人们说,物体的速度不能改变,只要没有使它改变的理由,那么人们难道不能同样地坚持这个物体的位置不能改变或它的轨道曲率不能改变,只要没有外部原因参与变更它们吗? 惯性原理不是先验的真理,它因而是实验事实吗?但是,任何人在任何时候实验过不受每一个力作用的物体吗?即使如此,又如何知道这些物体不受力的作用呢?通常引用的例子是球能在大理石板上滚动很长时间;可是,我们为什么说它没有受到力的作用呢?这是因为它远离所有其他物体,从而经受不到来自它们的可感觉的作用吗?可是,如果把它无约束地抛到空中,它也没有远离地球;每一个人都知道,在这种情况下,它经受了归因于地球引力的重力的影响。 力学教师通常很快地讲完球的例子;但他们附加说,惯性原理间接地被它的结果证实(verification)了。他们没有正确地表示它们;他们显然意味着,证实比较普遍的原理的各种推论是可能的,惯性原理只不过是其中的一个特例而已。 对于这个普遍原理,我将提出下述阐述: 物体的加速度仅取决于这个物体和邻近物体的位置以及它们的速度。 数学家会说,宇宙中一切物质分子的运动都取决于二阶微分方程。 这实验上是惯性定律的自然推广,为了使之更加清楚,我要请求你容许我作一点虚构。正如我上面说过的,惯性定律并非先验地强加于我们;其他定律同样可以完全与充足理由律相容。假如物体不受力的作用,那么与其假定它的速度不变,倒不如假定它的位置不变,要不然就假定它的加速度不变。 好了,让我们暂时设想,这两个假设的定律之一是自然定律,它代替了我们的惯性定律。什么可以是它的自然概括呢?稍加思索就会使我们明白。 在第一种情况下,我们必须假定,物体的速度仅仅取决于它的位置和邻近物体的位置;在第二种情况下,我们必须假定,物体加速度的变化仅仅取决于这个物体的位置和邻近物体的位置,以及它们的速度和加速度。 或者,用数学语言来说,运动微分方程在第一种情况下是一阶的,而在第二种情况下是三阶的。 让我们稍微修改一下我们的虚构。设有一个类似于我们太阳系的世界,但是由于奇怪的机遇,在那里所有行星的轨道没有离心率和倾角。进而假定这些行星的质量太小,以致它们的相互摄动难以觉察到。居住在这些行星之一上的天文学家不能不得出结论说,恒星的轨道只能是圆的,且平行于某一平面;于是,恒星在给定时刻的位置便足以确定它的速度和它的整个路程。他们可能采纳的惯性定律也许是我已经提到的两个假设的定律中的第一个。 现在,设想在某一天来自遥远星座的一个大质量天体以高速通过这个系统。所有的轨道都被大大地扰乱了。我们的天文学家还不会十分惊讶;他们会十分明确地推测,这个新星乃是唯一受到责备的祸首。他们也许说:“不过,当新星远离之后,秩序将自然地得以重建;无疑地,行星到太阳的距离将不会回复到它们在灾变前的状态,但是当扰乱的星球远离时,轨道将再次变成圆的。” 也许只有当扰乱的天体远离之后,当轨道不再变为圆形,而变成椭圆形时,这些天文学家才会逐渐意识到他们的错误和改造整个力学的必要性。 我已经详细地讲述了这些假设,因为在我看来,人们似乎只有把被概括的惯性定律与相反的假设相对照,才能清楚地理解该定律实际上是什么。 好了,现在这个被概括的惯性定律用实验证实了吗,或者它能够被证实吗?当牛顿写《原理》一书时,他完全以为这个真理是通过实验获得的和证明的真理。在他看来之所以如此,不仅是由于我将要进一步谈及的拟人说的影响,而且也受到伽利略(Galileo)工作的影响。甚至从开普勒(Kepler)定律本身起就是这样了;事实上,按照这些定律,行星的路线完全由它的初始位置和初始速度决定;这恰恰是我们概括的惯性定律所要求的东西。 由于这个原理只是表面上是真实的,由于人们有理由担心在某一天它被我刚才与之对照的类似的一个原理代替,我们必定会被某种令人惊异的机遇引入歧途,就像在上面提出的虚构中,我们设想的天文学家导致出错误一样。 这样的假设太靠不住了,不值得在此停留下去。没有一个人相信这样的巧合能够发生;毫无疑问,两个离心率的概率正好在观察误差范围内是零,例如,它与在观察误差范围内一个概率恰恰等于0.1,另一个概率恰恰等于0.2简直是一样的。一个简单事件的概率并不小于一个复杂事件的概率;可是,如果头一个发生了,我们不会同意把它归因于机遇;我们不会相信,自然界故意欺骗我们。由于抛弃了这类错误的假设,因而可以承认,就天文学而言,我们的定律被实验证实了。 然而,天文学不是物理学的全部。 我们不会害怕在某一天新实验将要在物理学的某些领域内否证该定律吗?实验定律总是要受到修正的;人们总是期望看到用更为精确的定律代替它。 可是,没有一个人认真地认为我们正在谈论的定律将永远被抛弃或被修正。为什么?恰恰是因为它永远不能受到决定性的检验。 首先,为了这个试验是完备的,必须在某一时间之后,宇宙中的所有天体应该回复到它们的初始位置以及初始速度。接着,就可以看到,从这一时刻开始,它们是否返回到它们的原始路线。 但是,这种检验是不可能的,它只能部分地使用,而且不管做得多么好,将总是有一些天体不能回复到它们的初始位置;从而,对于该定律的每一次背离都容易找到它的说明。 这并非一切;我们在天文学中看到我们研究其运动的天体,我们通常假定它们不受其他不可见天体的作用。在这些条件下,我们的定律的确或者必须被证实,或者不必被证实。 不过,在物理学中情况并不一样;如果物理现象都是由于运动,那就是我们看不见的分子的运动。其次,在我们看来,如果我们看得见的物体之一的加速度,除了依赖于其他可见的物体或者我们预先可以承认其存在的不可见的分子的位置或速度外,似乎还依赖于另外的东西,那么就没有什么妨碍我们假定,这种另外的东西就是我们以前未曾怀疑其存在的其他分子的位置或速度。该定律本身将依然得到保护。 请容许我使用数学语言以另一种形式描述一下同一思想。假定我们观察n个分子,并查明它们的3n个坐标满足3n个四阶(不像惯性定律所要求的二阶)微分方程组。我们知道,通过引入3n个辅助变量,3n个四阶方程组能够被简化为6n个二阶方程组。其次,如果我们假定这3n个辅助变量代表n个不可见分子的坐标,那么结果就重新与惯性定律一致。 总而言之,这个在某些特殊个例下用实验证实的定律,可以毫不犹豫地推广到最普遍的个例中去,因为我们知道,在这些普遍的个例中,实验既不能够进一步证实它,也不能够反驳它。 加速度定律。一个物体的加速度等于作用在它上面的力除以它的质量。这个定律能够用实验证实吗?为此,就必须测量在这个阐述中要计算的三个量:加速度、力和质量。 我假定能够测量加速度,因为我把在时间测量中产生的困难抛开了。可是,怎样测量力或质量呢?我甚至不知道它们是什么。 什么是质量呢?按照牛顿的观点,质量是体积与密度之积。按照汤姆孙(Thomson)和泰特(Tait)的观点,最好说密度是质量除以体积之商。什么是力呢?拉格朗日(Lagrange)回答说,力是使物体运动或企图使物体运动的东西。基尔霍夫(Kirchhoff)则说,力是质量与加速度之积。但是,为什么不说质量是力除以加速度之商呢? 这些困难是无法解决的。 当我们说力是运动的原因时,我们是在谈论形而上学,人们若满足这个定义,肯定毫无成果。要使一个定义有任何用处,它必须告诉我们如何测量力;而且,这就足够了;它根本没有必要告诉我们力本质上是什么,或者它是运动的原因还是运动的结果。 因此,我们必须首先定义两力之相等。我们什么时候才可以说两力相等呢?我们被告知,只有当它们施于相同的质量,使之产生相同的加速度时,或者当它们彼此直接相反从而出现平衡时。这个定义只不过是赝品而已。我们不能使施加到一个物体上的力脱离而使它依附于另一个物体,犹如不能使机车脱钩而把它挂到另一节车厢上一样。因此,我们不可能知道,施加于一个物体的力,如果把它施加给另一个物体,那么它会使另一个物体产生多大的加速度。我们也不可能知道,如果两个力曾经是直接相反的,当它们现在不直接相反时,它们会怎样作用。 可以说,当我们用测力计测量力时,或者使力与一个重物平衡时,我们正是企图使这个定义具体化。为简单起见,我将假定两个竖直向上的力F和F'分别施加在两个物体C和C'上;我把同一个重物P先挂在物体C上,然后挂到物体C'上;如果在两种情况下出现了平衡,我将得出结论说,两力F和F'彼此相等,因为它们每一个都等于物体P的重量。 但是,我能够确信当我把物体P从第一个物体移到第二个物体时,物体P保持同一重量吗?远非如此;我确信情况截然相反;我知道,重力的强度从一点到另一点是变化的,例如,它在两极比在赤道为强。无疑地,差别是极其微小的,实际上我们可以不考虑它;但是,适当构造的定义应该具有数学严格性;这种严格性却不足。我就重力所说的话显然适用于测力计的弹性力,温度和许多境况都可以使弹性力变化。 问题并未就此而已;我们不能说物体P的重量可以施于物体C且直接与力F平衡。施加于物体C的,是物体P加于物体C上的作用A;一方面,物体P部分地受到它的重力的作用;另一方面,受到物体C施加在P上的反作用R。结果,力F等于力A,因为F与A平衡;根据作用与反作用相等原理,力A等于R;最后,力R等于P的重量,因为R与P平衡。正是从这三个相等中,我们从而推论出F与P的重量相等。 因此,在定义两个力相等时,我们不得不引入作用与反作用相等原理;由于这个原因,这个原理必须不再被认为是实验定律,而是一个定义。 在这里为辨认两个力相等,我们于是具有两个法则:相互平衡的两力相等;作用力与反作用力相等。但是,正如我们在上面看到的,这两个法则是不充分的;我们不得不求助于第三个法则,并且假定某些力,例如物体的重量,在大小和方向上均为常数。但是,正如我已说过的,第三个法则是实验定律;它仅仅是近似真实的;它是一个拙劣的定义。 因此,我们被迫回到基尔霍夫的定义力等于质量乘以加速度。这个“牛顿定律”本身不能认为是实验定律,它现在仅仅是定义而已。但是,这个定义也不充分,因为我们不知道质量是什么。它无疑能使我们计算在不同时刻施加在同一物体上的两个力的关系;但它无法告诉我们施加在两个不同物体上的两个力的关系。 为了完善这个定义,必须重新返回到牛顿第三定律(作用与反作用相等),再次认为它不是实验定律,而是一个定义。两个物体A和B相互作用;A的加速度乘以A的质量等于B施加于A上的作用力;用同样的方式,B的加速度与其质量之积等于A施加于B的反作用力。按照定义,因为作用力等于反作用力,所以A和B的质量与它们的加速度成反比。在这里,我们定义了这两个质量之比,而且证实这个比率是常数的正是实验。 假使只有物体A和B在场,它们不受世界上其余物体的作用,那么这个定义便是十分完好的。可是情况根本不是这样;A的加速度不仅仅是由于B的作用,而且也是由于其他物体C,D,……的作用。为了运用前面的法则,因此必须把A的加速度分解为许多分量,并辨认这些分量中的哪一个是由于B的作用。 如果我们假定C施加于A的作用力简单地加在B施加于A的作用力上,而且改变B施加于A的作用的物体C并不存在,或者改变C施加于A的作用力的物体B并不存在,那么这种分解还是可能的;因此,如果我们假定任何两个物体相互吸引,它们的相互作用沿着它们的连线,而且仅取决于它们相隔的距离;一句话,如果我们假定有心力假设,那么这种分解也是可能的。 你知道,为了决定天体的质量,我们利用完全不同的原理。万有引力定律教导我们,两个物体的引力与它们的质量成正比;若r是它们之间的距离,m和m'是它们的质量,k是常数,是它们的引力将是kmm'/r2。 于是,我们正在测量的不是作为力与加速度之比的质量,而是引力质量;它不是物体的惯性,而是它的引力。 这是间接程序,这个程序的使用在理论上并不是必不可少的。很可能,引力与距离的平方成反比,而不与质量的乘积成正比,它等于f/r2,而不是我们所具有的f = kmm'。 假若如此,我们通过观察天体的相对运动,仍然可以测量这些天体的质量。 可是,我们有权利承认有心力假设吗?这个假设严格正确吗?能肯定它永远不会与实验矛盾吗?谁敢肯定这一点呢?如果我们必须抛弃这个假设,那么如此辛苦建造起来的整个大厦就要崩溃了。 我们不再有权利说A的加速度的分量是由于B的作用。我们无法把它与由于C或另外的物体的作用所产生的加速度区别开来。测量质量的法则变得不能应用了。 作用与反作用相等原理还留下什么东西呢?如果舍弃了有心力假设,这个原理显然应该如下阐述:施加于与所有外部作用隔离的系统中的各物体上的几何合力将为零。或者,换句话说,这个系统重心的运动将是匀速直线运动。 我们似乎有办法定义质量;重心的位置显然取决于质量所具有的值;有必要以这样的方式安排这些值,使重心的运动可以是匀速直线运动;如果牛顿第三定律是真实的,这将总是可能的,一般说来,这只有在一种方式下才可能。 但是,不存在与所有外部作用隔离的系统;宇宙的各个部分都或多或少地受到所有其他部分的作用。重心运动定律只有应用于整个宇宙时才是严格真实的。 但是,为了由此得到质量的值,有必要观察宇宙重心的运动。这个结果的荒谬是显而易见的;我们只知道相对运动;宇宙重心的运动对我们来说依然是永远不可知的。 因此,什么东西也没有留下来,我们的努力毫无成果;我们被迫退到下述定义,这只不过是一个无能为力的声明:质量是为计算方便而引入的系数。 我们能够通过把不同的值赋予所有质量而重建全部力学。这种新力学既不会与经验相矛盾,也不会与动力学的普遍原理(惯性原理、力与质量和加速度成正比、作用和反作用相等以及重心的匀速直线运动、面积原理)相矛盾。 只是这种新力学的方程不怎么简单。让我们清楚地理解一下:不怎么简单的只可能是头些项,这就是经验已经使我们知道的那些项;人们也许可以稍微改变一下质量,而不使完全方程在简单性方面有所得或有所失。 赫兹(Hertz)曾经提出了一个问题:力学原理是否是严格真实的。他说:“在许多物理学家看来,最间接的经验在任何时候都可以改变牢不可破的力学原理中的一切,这是不可思议的;可是,从经验中得来的东西总可以由经验矫正。”由于我们刚才所说的,这些担心似乎是毫无根据的。 对我们来说,动力学原理乍看起来好像是实验的真理;但是,我们不得不把它们作为定义来使用。正是按照定义,力等于质量与加速度之积;于是,这里就有一个今后不受任何进一步的实验影响的原理。同样根据定义,作用等于反作用。 但是,有人会说,这些不可检验的原理完全没有任何意义;实验不能反驳它们;然而,它不能告诉我们任何有用的东西;这样一来,研究动力学有什么用处呢? 这种轻率的定罪未免太不公平了。在自然界中没有任何完全孤立的、完全摆脱一切外部作用的系统;可是,有几乎孤立的系统吗? 如果这样一个系统被观察到了,人们不仅可以研究它的各部分相对于另外部分的相对运动,而且也可以研究它的重心相对于宇宙其他部分的运动。我们接着查明,这个重心的运动是匀速直线运动,这与牛顿第三定律一致。 这是实验的真理,但实验不能使它失效;事实上,比较精确的实验能告诉我们什么呢?它会告诉我们,定律只不过是差不多真实的;可是,我们早已知道了这一事实。 现在我们能够理解,经验为何能作为力学原理的基础,可是从来也不能与它们矛盾。 拟人的力学。有人会说:“基尔霍夫只是遵循倾向于唯名论的数学家的一般趋势行动;作为一个能干的物理学家,也不能使他避免这一点。他想定义力,为此他采用了呈现在眼前的第一个命题;但是我们不需要力的定义:力的观念是原始的、不可还原的、不能定义的;我们都知道它是什么,我们对它有一种直接的直觉。这种直接的直觉来自费力的概念,我们自幼就熟悉这一概念了。” 但是,首要的是,即使这种直接的直觉使我们了解到力本身的真正本性,可它作为力学的基础还是不够的;况且,它也许是完全无用的。重要的是,不在于了解力是什么,而是了解如何测量力。 对于力学家来说,凡是不能告诉我们测量力的都是无用的,例如,这就像热和冷的主观概念对于研究热的物理学家来说无用一样。这种主观概念不能翻译为数,因而它毫无用处;一个科学家的皮肤是热的绝对不良导体,因而他永远不会感到冷,也不会感到热,可是他能够像任何其他人那样读温度计,这就足以使他构造整个热理论。 现在,对我们来说,这种直接的费力概念不能用来测量力;例如,很清楚,我提50公斤重物就会感到比惯于负重的人劳累。 可是,还有比这更多的东西:这种费力的概念没有告诉我们力的真正本性;它本身最终归结为肌肉感觉的记忆,而且人们无法坚持,当太阳吸引地球时,太阳感受到肌肉感觉。 在那里能够探寻的一切只是一种符号,它并不比几何学家所使用的箭号精确和方便,可是正因为这样它才远离实在。 在力学的诞生中,拟人说起了显著的历史作用;也许它有时还将提供一种符号,这对某些心智来说似乎是方便的;不过,它不能作为真正科学的或哲学的特征的基础。 “线学派”。昂德拉德先生在他的《力学物理学教程》中使拟人的力学恢复了生机。为了与基尔霍夫所属的力学学派相对抗,他奇怪地自称线学派。 这个学派企图把一切都还原为“忽略质量的某些物质系统来考虑,设想该系统处于张力状态,能够把相当大的力量传给遥远的物体,这些系统的理想形式是线。” 传递任何力的线在这个力的作用下稍稍伸长;线的方向告诉我们力的方向,其大小由线的伸长来测量。 于是,人们可以想象这样一个实验。物体A系到线上;在线的另一端施加任何一种力,改变力的大小直到线伸长α;记下物体A的加速度;分开A,把物体B系到同一条线上;重新施加同一力或另外的力,改变力的大小直到线再次伸长α;记下物体B的加速度。然后,用A和B重新开始实验,但是使线伸长β。四个观察到的加速度应当成比例。这样一来,我们就对上面所阐述的加速度定律进行了实验证实。 或者,最好使一个物体受到具有相等张力的几个等价线的同时作用,并用实验寻找使物体处于平衡的所有这些线的方向。这样一来,我们就对力的合成法则进行了实验证实。 可是,我们到底做了什么呢?我们定义了这条线经受形变时所受到的力,这是有足够的理由的;我们进而假定,如果把一个物体系到这条线上,那么通过线传递给它的力量等于物体施加在这条线上的作用力;毕竟,我们因之使用了作用与反作用相等原理,可是并没有认为它是实验的真理,而认为它正是力的定义。 这个定义恰如基尔霍夫的定义一样,是约定的,但远非是普遍的。 并非所有的力都是通过线传递的(况且,为了能够比较这些力,它们都必须通过等价的线传递)。即使可以承认地球是用某种不可见的线系到太阳上,那么至少应该同意,我们没有办法测量它的伸长。 因此,我们的定义十有九是错误的;我们不能赋予它以任何意义,于是必须回到基尔霍夫的定义。 那么,为什么要费这个周折呢?你同意,力的某个定义只有在某些特殊个例中才有意义。在这些个例中,你用实验证实,它导致了加速度定律。依据这个实验的力量,你于是把加速度定律作为在所有其他个例中的力的定义。 把加速度定律作为所有个例中的定义,认为上述实验不是这个定律的证实,而是反作用原理的证实,或者是证 ✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜未完待续>>>完整版请登录大玄妙门网✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜