[book_name]从一到无穷大 [book_author]乔治·伽莫夫 [book_date]不详 [book_copyright]玄之又玄 謂之大玄=學海無涯君是岸=書山絕頂吾为峰=大玄古籍書店獨家出版 [book_type]外国名著,完结 [book_length]157554 [book_dec]科普代表作品,在当今世界仍然具有重要影响力。作为自然科学科普经典名著之一,直接影响了众多科研和科普工作者,是历久弥新的自然科学入门读物。 在本书中,伽莫夫以通俗易懂的方式介绍了20世纪以来世界范围内自然科学领域中的重大进展。全书共分四个部分,先由漫谈基础数学知识入手,用丰富有趣的比喻阐明了时间、空间的相对性,讲述了爱因斯坦的相对论及四维世界结构,最后全面讨论了人类在微观世界和宏观世界等方面的成就。 伽莫夫行文寓教于乐,本书不仅语言幽默生动,论述深入浅出,书中插图也均为作者亲笔绘制,是非常适合广大读者,尤其是学生和科学爱好者阅读的自然科学科普入门书。 [book_img]Z_9297.jpg [book_chapter]序 [book_title]前 言 原子、恒星和星云是如何构成的?熵和基因又是什么东西?能否使空间发生弯曲?火箭为何会收缩?……在这本书里,我们正是要讨论所有这些话题以及其他许多同样有趣的事物。 我之所以要写这本书,是想把现代科学中最有趣的事实和理论收集起来,从微观和宏观方面将今天科学家所看到的宇宙的总体图景展现给读者。在实施这项粗略的计划时,我并不想事无巨细地讲述整个故事,因为我知道,做任何这样的尝试都不可避免会写成一套多卷本的百科全书。不过,我所选择讨论的各种主题简要地涵盖了整个基础科学知识领域,没有留下什么死角。 由于书中的主题是按照其重要性和趣味性而不是简单性而选择的,所以对它们的介绍必定会有某种不均衡。书中的某些章节非常简单,连小孩也能读懂,而另一些章节却需要集中精力去研究才能完全理解。不过我希望,在阅读本书时,外行读者不会碰到太大的困难。 大家会注意到,本书最后讨论“宏观宇宙”的那部分内容要比讨论“微观宇宙”的短得多。这主要是因为我已经在《太阳的生与死》(The Birth and Death of the Sun)和《地球自传》(Biography of the Earth)1这两本书中详细讨论了与宏观宇宙有关的诸多问题,如果在这里作进一步的详细讨论,将是一种枯燥乏味的重复。因此在这个部分,我只是一般地论述一下行星、恒星和星云世界里的物理事实和事件以及支配它们的定律,只有那些因近年来科学知识的进展而得到清楚阐明的问题,我才会作更详细的讨论。根据这条原则,我特别注意以下两方面的新观点:一是认为巨大的恒星爆发即所谓的“超新星”是由物理学中已知最小的粒子“中微子”所引起的;二是新的行星理论,它摒弃了目前被普遍接受的观点,即行星源于太阳与其他恒星的碰撞,从而重新确立了康德和拉普拉斯几乎被人遗忘的旧观点。 我要感谢许多艺术家和插图画家,他们的拓扑变形作品成为本书许多插图的基础(见第二部分第三章)。特别要感谢我的年轻朋友玛丽娜·冯·诺伊曼(Marina von Neumann),她自称在所有事情上都比她著名的父亲懂得更多。当然数学是个例外,在数学方面,她只是说同父亲懂得一样多。读了本书的部分手稿之后,她告诉我,里面有许多东西她看不懂。听了她的话之后,我最终决定不再像原先打算的那样以孩子为对象来写作本书,而是将它写成现在这个样子。 乔治·伽莫夫 1946年12月1日 * * * 1 这两本书分别于1940年和1941年由海盗出版社在纽约出版。 [book_title]1961年版前言 所有科学书籍都很容易在出版几年之后变得过时,尤其是那些正在迅速发展的科学分支的作品。在这个意义上,我这本13年前出版的《从一到无穷大》是个幸运儿。撰写它的时候,科学刚刚取得了一些重大进展,而且这些进展都已经包含在书中,所以要使它跟上时代,只需稍作修改和补充。 其中一项重大进展是,人们已经以氢弹爆炸的形式通过热核反应成功地释放了原子能,并且朝着通过受控热核过程释放能量的目标缓步前进。由于本书第一版的第十一章已经描述了热核反应的原理及其在天体物理学中的应用,所以要想论及人类朝着这一目标前进的过程,只需在第七章结尾补充一些新的材料。 另一些变动涉及用加利福尼亚帕洛马山上那台新的200英寸海尔望远镜所进行的探测,它已经把宇宙的估计年龄从二三十亿年增加到五十亿年以上,并且修正了天文距离尺度。 随着生物化学最近的发展,我需要重新绘制图101,修改与之有关的文字,并且在第九章结尾补充一些关于合成简单生命有机体的新材料。在第一版中我曾写道(p.266):“是的,活物质与死物质之间肯定存在着一个过渡性的步骤。倘若在不久的将来,某位天才的生物化学家能用普通的化学元素合成出一个病毒分子,他将有权宣称:‘我已经把生命的气息注入了一块死物质!’”事实上,几年以前,加利福尼亚州已经有人做到了或者说差不多做到了,读者们可以在第九章结尾找到对这项工作的简要介绍。 还有一项变动:本书的第一版献给了“我的儿子伊戈尔,他想当个牛仔”。后来有许多读者写信问我,询问他是否真的成了牛仔。我的回答是:没有。他主修生物学,明年夏天毕业,计划以后研究遗传学。 乔治·伽莫夫 科罗拉多大学 1960年11月 [book_chapter]第一部分 做做数字游戏 [book_title]第一章 大数 一、你能数到多少? 有这么一个故事,说的是两个匈牙利贵族决定做一个游戏——谁说出的数最大谁赢。 “好,”其中一个人说,“你先说吧。” 另一个人绞尽脑汁想了几分钟,终于说出了他所能想到的最大的数:“3”。 现在轮到第一个人动脑筋了。苦想了一刻钟之后,他决定放弃:“你赢啦!” 这两个匈牙利贵族的智力水平当然并不很高。这个故事也许只是为了挖苦人罢了。但如果此二人不是匈牙利人,而是霍屯督人,那么上述对话或许的确发生过。的确有一些非洲探险家证实,许多霍屯督部族都没有词汇来表达比3大的数。如果问当地的一个土著他有几个儿子,或者杀死过多少敌人,那么倘若这个数大于3,他就会回答“许多”。于是就计数的本领而言,霍屯督的勇士们竟会败给我们幼儿园里自诩能够数到10的娃娃们! 今天我们往往会认为,我们想把一个数写成多大就能写成多大。无论是用分来表示战争开销,还是用英寸来表示星体之间的距离,只要在某个数右边写下足够数目的零就可以了。你可以一直这样写下去,直到手腕发酸。这样一来,你所写下的数不知不觉就会比宇宙中的原子总数更大,1随便说一句,宇宙中的原子总数是300 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000。 这个数可以写得短一些,即写成 3×1074, 这里,10右上方的小数字74表示应当写多少个零,或者说,3要用10乘上74次。 但古人并不知晓这种“让算术变得简单”的数制。事实上,它是一千多年前某位佚名的印度数学家发明的。在他做出这项伟大发现——这项发现的确很伟大,尽管我们通常并没有意识到这一点——之前,人们用一个特殊的符号来表示每一个十进制单位,并通过重复书写这个符号来书写数。例如,古埃及人会把8732这个数写成: 而恺撒政府中的职员则会把这个数写成: MMMMMMMMDCCXXXII 后一种记数法你一定很熟悉,因为直到现在,我们有时仍然会用罗马数字来表示书籍的卷数或章数,或者在庄严华美的纪念碑上记载历史事件的日期,等等。不过,古代的计数很少超过几千,所以也就没有用来表示更高十进制单位的符号。一个古罗马人,无论在算术方面多么训练有素,如果让他写一下“一百万”,他一定会不知所措。他所能做的最多只是接连写下一千个M,而这需要他费力写几个钟头(图1)。 图1 一个长得很像恺撒的古罗马人试图用罗马数字写下“一百万”,而墙上的那块板上恐怕连“十万”也写不下 对古人来说,那些很大的数,比如天上的星星、海里的鱼、岸边的沙粒等等,都是“无法计数”,就像“5”这个数对霍屯督人来说也是“无法计数”,从而变成了“许多”一样! 公元前3世纪的著名科学家阿基米德(Archimedes)曾经天才地表明,巨大的数是有可能书写出来的。他在《数沙者》(The Psammites)一书中说道: 有人认为,沙粒的数目是无穷大的;我所说的沙粒不仅是指存在于叙拉古周边以及整个西西里岛的沙粒,而且是指在地球所有区域所能找到的所有沙粒,无论那里是否有人居住。也有人认为,这个数目并非无穷大,但比地球沙粒数目更大的数是表示不出来的。如果想象地球是一个大沙堆,并把地球的所有海洋和洞穴都填满沙粒,一直填到与最高的山齐平,那么持有这种观点的人显然会更加确信,这样堆积起来的沙粒数目是无法表示的。但我要试图表明,使用我所命名的各种数,不仅能表示出按照上述方式填满整个地球的沙粒的数目,甚至能表示出填满整个宇宙的沙粒的数目。 阿基米德在这部名著中提出的书写大数的方法与现代科学中的方法很相似。他从古希腊算术中最大的数“万”开始,然后引入“亿”这个新的数作为“第二级单位”,然后是第三级单位“亿亿”、第四级单位“亿亿亿”,等等。 写出一些大数似乎无足轻重,没有必要用几页篇幅加以讨论。但在阿基米德那个时代,找到书写大数的方法的确是一项伟大的发现,使数学迈进了一大步。 要想计算填满整个宇宙所需的沙粒总数,阿基米德需要知道宇宙有多大。当时认为,宇宙被一个附有恒星的水晶天球所包围。据与阿基米德同时代的著名天文学家萨摩斯的阿里斯塔克(Aristarchus of Samos)估算,从地球到那个天球表面的距离约为10 000 000 000斯塔迪姆2,即约为1 000 000 000英里。 阿基米德将那个天球的尺寸同沙粒相比,作了一连串足以使高中生发生梦魇的计算,最后得出结论说: 显然,阿里斯塔克所估算的天球包围的空间中所能填充的沙粒数目,不会超过一千万个第八级单位。3 这里要注意,阿基米德对宇宙半径的估算远远小于现代科学家的观测结果。10亿英里仅比太阳系中土星的距离略大一些。我们将会看到,望远镜已经探测到宇宙5 000 000 000 000 000 000 000英里远的地方。填满整个可见宇宙所需的沙粒数超过 10100(即1后面有100个零)。 这个数当然远远大于本章开头所提到的宇宙中的原子总数3×1074,但我们不要忘了,宇宙中并非塞满了原子;事实上,平均来说,每立方米空间中只有大约1个原子。 要想得到巨大的数,并不一定要做出把整个宇宙塞满沙子这样的极端事情。事实上,在许多看似非常简单的问题中,它们也常常会跳将出来,而你事先肯定想不到其中会出现大于几千的数。 有一个人曾经在大数上吃了亏,那就是印度的舍罕王(King Shirham)。根据一则古老的传说,舍罕王打算赏赐他的首席大臣施宾达(Sissa Ben Dahir),因为施宾达发明了国际象棋,并且将它介绍给了舍罕王。这位聪明的大臣想要的似乎并不多,他跪在国王面前说:“陛下,请赐予我一粒麦子放入这张棋盘的第一个方格;在第二个方格放两粒,第三个方格放四粒,第四个方格放八粒,以此类推,每一个方格内的麦粒都比前一个方格加一倍。陛下啊,请把这样摆满棋盘上所有64个方格的麦粒赏赐给我吧!” “爱卿,你要的并不多啊,”国王为对这项奇妙的发明所许下的慷慨馈赠没有破费太多而暗喜,“你肯定会如愿以偿的。”他边说边命人将一袋麦子拿到宝座前。 然而随着计数的开始,第一个方格放一粒,第二个方格放两粒,第三个方格放四粒,……还没到第二十个方格,袋子已经空了。一袋又一袋的麦子被陆续扛到国王面前,但每一个方格所需的麦粒数飞速增长,情况很快就变得很清楚,即使拿来印度的所有粮食,国王也无法兑现他对施宾达的承诺,因为这将需要18 446 744 073 709 551 615颗麦粒!4 图2 机智的数学家首席大臣施宾达在向印度的舍罕王请赏 这个数不像宇宙中的原子总数那样大,但也非常可观了。假定1蒲式耳小麦约有5 000 000粒,那就需要4万亿蒲式耳小麦才能满足施宾达的要求。这位首席大臣索取的竟然是全世界在大约2000年里所产出的所有小麦! 这样一来,舍罕王发现自己欠了施宾达一大笔债。他要么得面对施宾达没完没了的讨债,要么干脆砍掉施宾达的脑袋。我猜想,舍罕王大概选择了后者。 另一个由大数当主角的故事也出自印度,它与“世界末日”问题有关。喜爱数学的历史学家鲍尔(W. W. R. Ball)是这样讲这个故事的:5 在瓦拉纳西6伟大的神庙里,在标志着世界中心的穹顶下方安放着一个黄铜板,板上固定着三根钻石针。每根针高1腕尺(1腕尺约合20英寸),如蜜蜂身体般粗细。梵天在创世的时候,在其中一根针上放置了64个金片,最大的金片位于底部,紧挨着黄铜板,其他金片从下到上依次减小。这就是梵塔。有一个值班的僧侣按照梵天固定不变的法则,昼夜不停地将这些金片从一根针移到另一根针:一次只能移一片,而且无论在哪一根针上,小片必须永远在大片上面。当所有这64个金片都从梵天创世时所放置的那根针移到另一根针时,世界将随着一声霹雳而烟消云散,梵塔、神庙和众婆罗门都将化为灰烬。 图3描绘了故事中的安排,只是金片没有画那么多。你可以用普通的硬纸片代替这则印度传说中的金片,用长铁钉代替钻石针,亲手制作这样一个玩具。不难发现,移动金片的一般规则是:移动每一片的次数总是移动上一片次数的两倍。第一片只需移动一次,接下来每一片的移动次数则按几何级数增加。于是,移动第64片的次数将与施宾达所要求的麦粒数一样多!7 图3 一个僧侣在巨大的梵天雕像前解决“世界末日”问题。为方便起见,这里没有将所有64个金片都画出来 将梵塔上所有64个金片都移到另一根针上需要多长时间呢?一年有大约31 558 000秒,假定僧侣们加班加点地每秒钟移动一次,昼夜不停,那么需要58万亿年左右才能完工。 我们不妨将这个关于宇宙寿命的纯属传说的预言同现代科学的预言作一对比。按照目前关于宇宙演化的理论,恒星、太阳和行星,包括我们的地球,都是在大约30亿年前由无定形的物质形成的。我们还知道,为恒星特别是太阳提供能量的“原子燃料”还能维持100亿或150亿年(见“创世年代”一章)。因此,我们宇宙的总寿命肯定不到200亿年,而不像这个印度传说所估计的58万亿年!不过,它毕竟只是个传说! 文献中曾经提及的最大的数也许与著名的“印刷行数问题”有关。假定我们建造了一台印刷机,它可以连续印出一行行文字,并且自动为每一行选择字母和其他印刷符号的组合。这样一台机器将包括若干分离的轮盘,轮盘的整个边缘都刻有字母和符号。盘与盘之间就像汽车的里程指示器中的数码盘那样装配在一起,使得每一个轮盘转动一周就会带动下一个轮盘前移一个位置。每一次移动之后,纸卷都会自动压到滚筒上。这样一台自动印刷机建造起来并不很困难,图4便是这种机器的示意图。 图4 一台自动印刷机刚刚准确印出一行莎士比亚诗句 让我们开动这台机器,检查一下印刷出来的那些没完没了的东西吧。这些东西大都没有什么意义,比如: “aaaaaaaaaaaa…” 或者 “boobooboobooboo…” 或者 “zawkpopkossscilm…” 不过,既然这台机器能够印出字母与符号的所有可能组合,我们就能从这堆毫无意义的句子中找出点有意义的。当然,这其中又有许多无效的句子,比如: “horse has six legs and…”(马有六条腿,并且……) 或者 “I like apples cooked in terpentin…”(我喜欢吃松节油煎苹果……)。 但只要坚持不懈地找下去,就一定会发现莎士比亚所写下的每一句话,甚至是那些被他扔进废纸篓的句子! 事实上,这台自动机会印出人类从学会写字以来所写出的一切:每一句散文和诗歌,报纸上的每一篇社评和广告,每一本厚重的科学论著,每一封情书,每一张订奶单…… 不仅如此,这台机器还将印出未来所要印刷的所有东西。在从滚筒出来的纸上,我们可以找到30世纪的诗歌,未来的科学发现,在第500届美国国会上所作的讲演,对2344年星际交通事故的报道,还会有一页页尚未写出来的长、短篇小说。出版商如果地下室里有这样的机器,他们只需从印出的大量荒唐文字中选编一些好的句子就可以了——这也正是他们现在在做的事情。 这为什么做不到呢? 英语字母表中有26个字母、10个数字(0、1、2、…、9),还有14个常用符号(空白、句号、逗号、冒号、分号、问号、感叹号、破折号、连字符、引号、省略号、小括号、中括号、大括号),共50个字符。再假设这台机器有65个轮盘,对应于平均打印行的65个位置。打印行可以从任何一个字符开始,因此有50种可能性。对于这50种可能性中的每一种,该行第二个位置又有50种可能性,因此共有50×50=2500种可能性。而对于前两个字符的每一种给定组合,第三个位置又有50个字符可以选择。这样下去,对整个打印行进行安排的可能性总数为 , 或者 5065, 它等于10110。 要想知道这个数有多么巨大,你可以假想宇宙中的每个原子都是一台独立的印刷机,这样就有3×1074台机器同时工作。再假定所有这些机器自宇宙诞生以来就一直在运转,也就是说已经运转了30亿年或1017秒,而且它们都以原子振动的频率在印刷,即每秒钟印出1015行。那么到现在为止,这些机器大约印了3×1074×1017×1015=3×10106行,而这只是上面那个总数的1/3000左右而已。 看来,想要在这些自动印出的材料里做某种挑选,的确要花非常漫长的时间! 二、怎样对无穷大进行计数 上一节我们讨论了一些数,其中许多是相当巨大的。但这些巨大的数,比如施宾达所要的麦粒数,虽然大得令人难以置信,但仍然是有限的,只要有足够的时间,总能把它们从头到尾写出来。 但的确存在着一些无穷大数,它们比我们所能写出的任何数都要大,无论我们书写多长时间。例如,“所有数的数目”显然是无穷大的,“一条线上所有几何点的数目”也是如此。关于这些数,除了说它们是无穷大的,我们还能说什么吗?例如,我们是否有可能对两个不同的无穷大进行比较,看看哪个“更大”呢? “所有数的数目和一条线上所有几何点的数目,哪个更大呢?”这个问题有意义吗?著名数学家康托尔(Georg Cantor)最先思考了这类初看起来荒诞不经的问题,他的确称得上是“无穷大算术”的奠基人。 如果想谈论无穷大的大小,我们就会面临一个问题:这些数既读不出来,也写不出来,该怎样比较呢?此时我们就像一个霍屯督人在检查自己的财宝箱,想知道其中究竟是玻璃珠多还是铜币多。但你大概还记得,霍屯督人最多只能数到3。难道他会因为数不出来而不再尝试比较珠子和铜币的数目吗?绝对不会。如果足够聪明,他会把珠子和铜币逐个进行比较,以此来得出答案。他可以把一颗珠子放在一枚铜币旁边,再把另一颗珠子放在另一枚铜币旁边,然后一直这样下去……如果珠子用光了,还剩下一些铜币,他就知道铜币多于珠子;如果铜币用光了,珠子还有剩余,他就知道珠子多于铜币;如果两者同时用光,他就知道珠子与铜币数目相等。 康托尔正是用这种方法对两个无穷大进行比较的:如果可以给两组无穷大中的各个对象一一配对,使一组无穷大中的每一个对象都能与另一组无穷大中的每一个对象一一对应,任何一组都没有对象遗漏,就说这两组无穷大是相等的;如果有一组还留下了一些对象没有配对,就说这组对象的无穷大比另一组对象的无穷大更大,或者说更强。 这显然是我们可以用来对无穷大量进行比较的非常合理的规则,事实上也是唯一可能的规则。但在实际开始运用它时,我们很可能会大吃一惊。例如,所有偶数的无穷大和所有奇数的无穷大,你当然会直觉地感到偶数与奇数的数目相等。这与上述法则完全一致,因为这两组数之间可以建立如下的一一对应关系: 在这张表中,每一个奇数都有一个偶数相对应,反之亦然。因此,偶数的无穷大等于奇数的无穷大。这的确再简单自然不过了! 但是,且慢。所有整数(包括奇数和偶数)的数目和仅仅偶数的数目,你认为哪个大呢?当然,你会说前者更大,因为所有整数不仅包括所有偶数,而且还包括所有奇数。但这只是你的感觉而已。要想得出正确的答案,你必须运用比较两个无穷大的上述规则。如果运用了这个规则,你就会惊讶地发现,你的感觉是错误的。请看,以下是所有整数和所有偶数的一一对应表: 根据对无穷大进行比较的上述规则,我们不得不说,偶数的无穷大与所有整数的无穷大一样大。当然,这听起来非常悖谬,因为偶数只是所有整数的一部分。但不要忘了,我们这里是在与无穷大数打交道,因此必须有碰到不同性质的思想准备。 事实上,在无穷大的世界里,部分有可能等于整体!关于这一点,著名德国数学家希尔伯特(David Hilbert)所讲述的一则故事也许是最好的说明。据说他曾在关于无穷大的演讲中这样讲述无穷大数的这种悖谬性质:8 设想有一家旅店,内设有限个房间,而且所有房间都已住满。这时又来了一位客人,想订个房间。店主说:“对不起,所有房间都住满了。”现在再设想一家旅店,内设无穷多个房间,所有房间也都住满了。此时也来了一位新客,想订个房间。 “当然可以!”店主说。接着,他把一号房间里的客人移到二号房间,二号房间的客人移到三号房间,三号房间的客人移到四号房间,……,以此类推。这样一来,新客就可以住进已被腾空的一号房间。 我们再设想一个有无穷多个房间的旅店,所有房间都已经住满。这时来了无穷多位想订房间的客人。 “好的先生们,请稍等,”店主说。 他把一号房间的客人移到二号房间,二号房间的客人移到四号房间,三号房间的客人移到六号房间,以此类推。 现在,所有单号房间都腾出来了。新来的无穷多位客人可以住进去了。 希尔伯特讲这个故事时正值战争期间,所以即使在华盛顿也很难想象他所描述的情况。但这个例子的确使我们清楚地明白了:我们在与无穷大数打交道时碰到的性质与普通算术中常见的性质大相径庭。 运用比较两个无穷大的康托尔规则,我们现在也能证明,所有像或这样的普通分数的数目与所有整数的数目相等。事实上,我们可以把所有普通分数按照以下规则排成一排:先写下分子与分母之和等于2的分数,这样的分数只有一个,即;然后写下分子与分母之和等于3的分数,这样的分数有两个,即和;然后写下分子与分母之和等于4的,即。以此类推,我们便得到了一个无穷的分数数列,它包含了我们所能想到的所有分数(图5)。现在,在这个数列上方写出整数数列,这样便有了无穷多个分数与无穷多个整数之间的一一对应。因此,它们的数目又是相等的! 图5 一个非洲土著和康托尔教授都在对其数不出来的数进行比较 “是啊,这一切都很妙,”你可能会说,“但这是否就意味着,所有无穷大都彼此相等呢?如果是这样,还比较它们干什么呢?” 不,情况并非如此。我们很容易找到一个无穷大,它比所有整数或所有分数的无穷大更大。 事实上,考察一下本章前面提出的那个比较一条线上的点数和所有整数数目的问题,我们就会发现,这两个无穷大是不同的。一条线上点的数目要比整数或分数的数目多得多。为了证明这一点,我们先尝试在一条线(比如1英寸长)上的点与整数数列之间建立一一对应关系。 线上的每一点都可用该点到这条线某一端的距离来表示,此距离可以写成无限小数的形式,比如0.735 062 478 005 6…或 0.382 503 756 32…9现在我们要比较一下所有整数的数目和所有可能的无限小数的数目。那么,上面写出的无限小数与或这样的分数有何不同呢? 大家一定还记得,我们在算术课上学过:每一个普通分数都可以转化为一个无限循环小数。例如=0.6666…=0.66,=0.4285714285714285714…=0.(428571)。我们前面已经证明,所有普通分数的数目等于所有整数的数目,因此所有循环小数的数目也必定等于所有整数的数目。但一条线上的点不一定能由循环小数表示出来,绝大多数点是由不循环小数表示的。因此很容易证明,在这种情况下不可能建立一一对应关系。 假定有人声称已经建立了这样一种一一对应,且具有以下形式: N 1 0.38602563078 … 2 0.57350762050 … 3 0.99356753207 … 4 0.25763200456 … 5 0.00005320562 … 6 0.99035638567 … 7 0.55522730567 … 8 0.05277365642 … • ………………… • ………………… 当然,由于不可能把无穷多个整数和无穷多个小数实际写出来,所以上述说法只是意味着这张表的作者有了某种一般规则(类似于我们用来排列普通分数的规则),并且根据这种规则制作了这张表,此规则保证每一个小数迟早会出现在这张表上。 但我们很容易证明,任何此类说法都是站不住脚的,因为我们总能写出一个无限小数没有包含在这张无穷表之中。怎么写呢?非常简单。只要让该小数的第一小数位区别于表中N1的第一小数位,第二小数位区别于表中N2的第二小数位,等等。你所得到的数可能是下面这个样子: 无论你怎样找,都不可能在上表中找到这个数。事实上,如果该表的作者告诉你,你所写出的这个数位于他那张表上的N137(或其他任何序号),你可以立即回答说:“不可能,我这个数并不是你那个数,因为我这个数的第137小数位不同于你那个数的第137小数位。” 因此,线上的点与整数之间不可能建立起一一对应关系。这意味着,线上的点的无穷大大于或强于所有整数或分数的无穷大。 我们一直在讨论“1英寸长”的线上的点。但现在很容易证明,按照我们“无穷大算术”的规则,无论多长的线都是如此。事实上,无论是1英寸长的线,1英尺长的线,还是1英里长的线,上面的点数都相同。要想证明这一点,只要看看图6,AB和AC是两条不同长度的线,现在要比较其上的点数。为了在这两条线的点之间建立一一对应关系,过AB上的每一点作BC的平行线与AC相交,这样便形成了D与D′,E与E′,F与F′等交点。对于AB上的任意一点,都有AC上的一个点与之对应,反之亦然。于是按照我们的规则,这两个无穷大是相等的。 通过这种对无穷大的分析还能得出一个更加惊人的结论:一个平面上所有点的数目与一条线上所有点的数目相等。为了证明这一点,让我们考虑一条长1英寸的线AB上的点和边长1英寸的正方形CDEF上的点(图7)。 图6 图7 假定这条线上某一点的位置由某个数给出,比如0.75120386…。我们可以把这个数的奇数位和偶数位挑出来再组合到一起,形成两个不同的小数: 0.7108… 和 0.5236… 在正方形中沿水平和竖直方向量出由这两个数所指定的距离,把这样得到的点称为原来线上那个点的“对偶点”。反过来,对于正方形中的任意一点,比如由0.4835…和0.9907…这两个数来描述的点,我们把这两个数合到一起,便得到了线上相应的“对偶点”:0.49893057…。 显然,通过这种程序可以在两组点之间建立一一对应关系。线上的每一点在正方形中都有其对应点,正方形中的每一点在线上也有其对应点,没有被遗漏的点。于是,按照康托尔的标准,一个正方形中所有点的无穷大与一条线上所有点的无穷大相等。 通过类似的办法也很容易证明,立方体中所有点的无穷大与正方形或线上所有点的无穷大相等。为此,我们只需把最初那个无限小数分成三部分,10并用由此获得的三个新的小数来定义立方体中“对偶点”的位置。和不同长度的两条线的情况一样,正方形或立方体中的点数与该正方形或立方体的尺寸无关。 虽然所有几何点的数目要大于所有整数和分数的数目,但这还不是数学家们知道的最大的数。事实上,人们发现,所有可能的曲线,包括形状最不寻常的那些,其成员数目要比所有几何点的数目更大,因此应把它看成无穷大序列中的第三个数。 根据“无穷大算术”的创始人康托尔的说法,无穷大数由希伯来字母(读作阿列夫)表示,其右下角再用一个小数字来表示此无穷大的级别。这样一来,数(包括无穷大数)的序列就成了: 1,2,3,4,5,…1,2,3… 正如我们说“世界有7大洲”,“一副扑克有54张牌”,我们也可以说“一条线上有1个点”,“存在着2种不同的曲线”。 图8 前三个无穷大数 在结束关于无穷大数的讨论时,我们要指出,这些数很快就把人们所能想象的无穷大数包含了进去。我们知道,0表示所有整数的数目,1表示所有几何点的数目,2表示所有曲线的数目,但是到目前为止,还没有人想得出能用3来表示的无限集合。似乎前三个无穷大数就足以数出我们所能想到的任何东西了。我们现在的处境正好与我们那位霍屯督老朋友完全相反:他有许多个儿子,却数不过3;我们什么都能数,却没有那么多东西让我们来数! [book_title]第二章 自然数与人工数 一、最纯粹的数学 数学通常被人们尤其是数学家们誉为科学的女皇。既然是女皇,自然要力图避免与其他知识分支扯上关系。比如在一次“纯粹数学与应用数学联席会议”上,希尔伯特应邀作一次公开演讲,以帮助消除这两种数学家之间的敌意,他是这样说的: 我们常常听说,纯粹数学与应用数学是彼此敌对的。事实并非如此。纯粹数学和应用数学并非彼此敌对。它们过去不曾敌对,将来也不会敌对。它们不可能彼此敌对,因为两者其实毫无共同之处。 然而,尽管数学喜欢保持纯粹,并尽力远离其他科学,但其他科学尤其是物理学,却极力同数学“亲善”。事实上,纯粹数学的几乎每一个分支现在都被用来解释物理世界的某个特征。这包括抽象群理论、非交换代数、非欧几何等一直被认为最为纯粹、绝不可能付诸应用的学科。 但迄今为止,除了起智力训练的作用以外,还有一个巨大的数学分支成功地保持住了自己的无用性,它真可以被冠以“纯粹之王”的名号呢。这就是所谓的“数论”(这里的数指整数),它是纯粹数学思想最古老也最复杂的产物之一。 说来也怪,从某种角度来讲,数论这种最纯粹的数学竟然又可以称为一门经验科学,甚至是一门实验科学。事实上,它的绝大多数命题都是通过尝试用数来做不同的事情而提出的,就像物理学定律是通过尝试用物体来做不同的事情而提出的一样。此外,数论的一些命题已经“在数学上”得到了证明,而另一些命题还停留在纯粹经验的阶段,至今仍在考验最出色数学家的能力,这一点也和物理学一样。 让我们以质数问题为例来说明这一点。所谓质数,是指那些不能用两个或两个以上更小整数的乘积来表示的数,比如 2,3,5,7,11,13,17等就是这样的数。而比如12可以写成2×2×3,所以就不是质数。 质数的数目是无限的呢,还是存在着一个最大的质数,凡是比这个数更大的数都可以表示成已有质数的乘积呢?这个问题最早是欧几里得(Euclid)解决的,他简单而优雅地证明了并不存在什么“最大的质数”,质数的数目超出了任何限度。 为了考察这个问题,让我们暂时假定只知道有限个质数,其中最大的用N表示。现在我们把所有已知的质数都乘起来,再加上1,把它写成以下形式: (1×2×3×5×7×11×13×…×N)+1。 这个数当然比那个据称的“最大质数”N大得多。但它显然不能被我们的任何一个质数(到N为止,包括N在内)除尽,因为从这个数的构造方式可以看出,拿这些质数中的任何一个来除它,都会留下余数1。 因此,这个数要么本身也是一个质数,要么必定能被一个比N更大的质数整除。而这两种情况都与我们最初假设的N是最大的质数相矛盾。 这种证明方式被称为归谬法,是数学家最爱用的工具之一。 图9 一旦知道质数的数目是无限的,我们自然会问,是否有什么简单的办法可以把它们一个不漏地挨个写出来。古希腊哲学家和数学家埃拉托色尼(Eratosthenes)最早提出了这样一种方法,即所谓的“筛法”。你只需将完整的自然数列 1,2,3,4…写下来,然后相继删去所有2的倍数、3的倍数、5的倍数,等等。图9显示了将埃拉托色尼的“筛法”用于前100个数的情况,其中总共有26个质数。通过使用这种简单的筛法,我们已经制作了10亿以内的质数表。 倘若能设计出一个公式,可以迅速地自动找到所有质数而且仅仅是质数,那该多方便啊。可惜,经过数个世纪的努力,我们仍然没有找到这样的公式。1640年,著名的法国数学家费马(Pierre Fermat)认为自己已经设计出了一个只产生质数的公式:22n+1,其中n取1,2,3,4等自然数的值。 运用这个公式,我们得到: 221+1=5, 222+1=17, 223+1=257, 224+1=65537。 这几个数的确都是质数。但在费马宣布这个公式之后大约一个世纪,德国数学家欧拉(Leonard Euler)证明,费马的第五个数225+1=4 294 967 297并非质数,而是6 700 417与641的乘积。于是,费马这个演算质数的经验规则被证明是错误的。 还有一个引人注目的公式也可以产生许多质数。这个公式是: n2-n+41, 其中n也取1,2,3等自然数的值。人们已经发现,在n取1到40之间某个数的情况下,用上述公式都能产生质数。可惜到了第41步,这个公式也不管用了。 事实上, (41)2-41+41=412=41×41, 这是一个平方数,而不是质数。 人们还尝试过另一个公式: n2-79n+1601, 在n取从1到79之间的某个数时,这个公式都能产生质数,然而当n=80时,它又失效了! 于是,寻找只产生质数的普遍公式的问题仍然没有得到解决。 尚未得到证明也没有被否证的数论定理的另一个有趣例子是1742年提出的所谓“哥德巴赫猜想”。它说:每一个偶数都能表示成两个质数之和。从一些简单的例子很容易看出它是对的,比如12=7+5,24=17+7,32=29+3。但数学家们虽然就此作了大量研究,却依然不能确凿地证明这个命题是对的,也找不出一个反例来否证它。直到1931年,苏联数学家施尼雷尔曼(Schnirelmann)才朝着所期望的证明成功地迈出了建设性的第一步。他证明,每一个偶数都是不多于300 000个质数之和。后来,“300 000个质数之和”与“2个质数之和”之间的差距被另一位苏联数学家维诺格拉多夫(Vinogradoff)大大缩短了。他把史尼雷尔曼的结论减少到“4个质数之和”。但是从维诺格拉多夫的“4个质数”到哥德巴赫的“2个质数”,这最后的两步似乎最难迈过去。我们不知道究竟需要几年还是几个世纪,才能最终证明或否证这个困难的命题。 由此可见,要想导出能够自动给出小于任意大的数的所有质数的公式,我们还有很远的路要走,我们甚至不确定究竟能否导出这样的公式呢。 现在,我们也许可以问一个更为谦卑的问题:在给定的数值区间内,质数所占的百分比有多少。随着数变得越来越大,这个百分比是否大致保持恒定?如果不是,它是增大还是减小?我们可以通过查找不同数值区间内的质数数目来经验地回答这个问题。我们发现,100以内有 26个质数,1 000以内有168个,1 000 000以内有78 498个,1 000 000 000以内有50 847 478个。把这些质数数目除以相应的数值区间,我们便得到了下面这张表: 数值区间 1~N 质数数目 比率 偏差(%) 1~100 26 0.260 0.217 20 1~1 000 168 0.168 0.145 16 1~106 78 498 0.078 498 0.072 382 8 1~109 50 847 478 0.050 847 478 0.048 254 942 5 从这张表上首先可以看出,随着数值区间的扩大,质数的相对数目在逐渐减少,但并不存在质数的终点。 有没有什么简单的办法能对质数在大数当中所占百分比的这种减小做出数学表示呢?有的,而且支配质数平均分布的法则堪称整个数学中最引人注目的发现之一。这条法则说:从1到任何更大的数N之间质数所占的百分比近似由N的自然对数的倒数所表示。11N越大,这种近似就越精确。 从上表的第四栏可以查到N的自然对数的倒数。将它们与前一栏的值对比一下,就会看到两者非常接近,而且N越大就越接近。 和其他许多数论命题一样,上述质数定理起初也是凭经验发现的,而且长时间得不到严格的数学证明。直到19世纪末,法国数学家阿达马(Jacques Solomon Hadamard)和比利时数学家普桑(de la Vallée Poussin)才终于证明了它。其证明方法太过繁难,这里就不去解释了。 既然讨论整数,就不能不提到著名的费马大定理,尽管这个定理与质数的性质并无必然联系。这个问题可以追溯到古埃及,那里的每一个好木匠都知道,一个三边之比为3:4:5的三角形必定包含一个直角。事实上,古埃及人正是把这样一个三角形(现在被称为埃及三角形)用作木匠的曲尺。 公元3世纪时,亚历山大里亚的丢番图(Diophantes)开始思考这样一个问题:是否只有3和4这两个整数才满足其平方和等于另一个整数的平方?他证明,还有其他三个一组的整数(事实上有无穷多组)具有这样的性质,并且给出了找到这些整数的一般规则。这些三边均为整数的直角三角形被称为毕达哥拉斯三角形,埃及三角形是其中第一个。构造毕达哥拉斯三角形的问题可以简单地表述成解代数方程 x2+y2=z2, 其中x,y,z须为整数。12 1621年,费马在巴黎买了一本丢番图所著《算术》的法文译本,其中讨论了毕达哥拉斯三角形。费马读这本书时,在书页空白处作了一则简短的笔记,说虽然方程 x2+y2=z2 有无穷多组整数解,但对于任何 xn+yn=zn 类型的方程,当n大于2时永远没有整数解。 “我发现了一个绝妙的证明,”费马补充说,“但这里的空白太窄了,写不下。” 费马去世后,人们在他的图书室发现了丢番图的那本书,那则旁注的内容也公之于世。三百多年来,各国最优秀的数学家都在力图重建费马写那则旁注时所想到的证明,但至今未能成功。13当然,在朝着终极目标迈进方面已经有了很大进展。一门全新的数学分支,即所谓的“理想数理论”,在尝试证明费马大定理的过程中被创建出来。欧拉证明,方程x3+y3=z3和x4+y4=z4不可能有整数解。狄利克雷(Dirichlet)证明,x5+y5=z5也是如此。通过几位数学家的共同努力,现已证明,当n的值小于269时,费马方程都不可能有整数解。不过,对指数n取任何值都成立的一般证明一直没能作出。人们越来越怀疑,费马要么根本没有作出证明,要么就是在证明过程中有什么地方弄错了。为了寻求这个问题的解答,曾经悬赏10万德国马克,这个问题因此变得红极一时。不过,那些为奖金而来的业余数学家的努力全都以失败而告终。 当然,这个定理也有可能是错误的,只要能找到一个例子,证明两个整数的某个相同高次幂之和等于另一个整数的同一次幂就可以了。不过在寻找这个例子时,我们只能使用比269更大的幂次,这可不是容易的事情啊。 二、神秘的 现在,我们来做点儿高级算术。二二得四,三三得九,四四一十六,五五二十五。因此,四的平方根是二,九的平方根是三,十六的平方根是四,二十五的平方根是五。14 但一个负数的平方根会是什么呢?和这样的表达式有什么意义吗? 如果你试图以理性的方式来理解这样的数,你一定会得出结论说,上述表达式没有任何意义。我们可以引用12世纪的印度数学家婆什迦罗(Brahmin Bhaskara)的话:“正数的平方是正数,负数的平方也是正数。因此,正数的平方根有两个:一个正的、一个负的。负数没有平方根,因为负数不是平方数。” 但数学家都是固执的人。如果有某个看上去没有意义的东西不断出现在其公式中,他们就会尽力为其赋予意义。负数的平方根显然持续出现在各种地方,无论是过去的数学家所思考的简单算术问题,还是20世纪在相对论框架内将时间和空间统一起来的问题。 最早将负数的平方根这个看似没有意义的东西写到公式中的勇士是16世纪的意大利数学家卡尔丹(Cardan)。在讨论是否有可能将10分成乘积等于40的两部分时,卡尔丹表明,虽然这个问题没有任何有理解,但如果把答案写成5+和5-这两个荒谬的表达式就可以了。15 卡尔丹虽然承认这两个表达式没有意义,是虚构和想象的,但还是把它们写下来了。 如果有人敢把负数的平方根写下来,那么将10分成乘积等于40的两部分的问题就迎刃而解了,尽管它们是虚构的。一旦打破坚冰,负数的平方根,或如卡尔丹所称的“虚数”,就越来越被数学家们频繁使用了,尽管使用时总是很有保留,并且要找适当的借口。在著名德国科学家欧拉1770年出版的代数著作中,我们看到了对虚数的大量运用。但作为缓和,他又加上了如下评论:“所有像、……这样的表达式都是不可能的或想象中的数,因为它们表示的是负数的平方根。对于这类数,我们也许可以断言,它们既不是无,也不比无更多或更少。它们纯属虚幻或不可能。” 然而,尽管有这些毁谤和借口,虚数很快就成了数学中像分数或根式一样无法避免的东西。如果不使用虚数,几乎可以说寸步难行。 可以说,虚数家族代表着实数的一个虚构的镜像。正如我们从基本数1可以产生所有实数,我们也可以把当作虚数的基本数(通常用符号i表示),由它产生所有虚数。 不难看出,=×=3i,=×=0.246…i,等等,因此每一个实数都有自己的虚数搭挡。我们还能像卡尔丹起初所做的那样把实数和虚数结合起来,组成像5+=5+i这样的表达式。这种混合形式通常被称为复数。 闯入数学领域之后足足两个世纪,虚数仍然被一张难以置信的神秘面纱包裹着,直到两位业余数学家,即挪威的测量员韦塞尔(Wessel)和巴黎的簿记员阿尔冈(Robot Argand),最终对虚数做出了简单的几何解释。 按照他们的解释,一个复数,例如3+4i,可以像在图10中那样表示出来,其中3对应着水平距离,4对应着垂直距离。 事实上,所有实数(无论是正是负)都可以用横轴上的点来表示,所有纯虚数都可以用纵轴上的点来表示。我们把一个实数(代表横轴上的一个点)比如3乘以虚数单位i,就得到了位于纵轴上的纯虚数3i。因此,一个数乘以i,在几何上等价于逆时针旋转90°。(见图10)。 图10 如果把3i再乘以i,则须再旋转90°,结果又回到了横轴,不过现在位于负数那一边。因此, 3i×i=3i2=-3, 或 i2=-1。 说“i的平方等于-1”远比说“两次逆时针旋转90°便成反向”更容易理解。 当然,同样的规则也适用于混合的复数。把3+4i乘以i,我们得到 (3+4i)i=3i+4i2=3i-4=-4+3i。 由图10立即可以看到,-4+3i这个点对应于3+4i这个点围绕原点逆时针旋转90°。同样,由图10也可以看出,一个数乘以-i不过是它围绕原点顺时针旋转90°罢了。 如果你仍然觉得虚数蒙有一层神秘的面纱,那就让我们通过解决一个虚数有实际应用的简单问题来揭开它吧。 有一个喜欢冒险的年轻人,在他曾祖父的遗稿中发现了一张羊皮纸,上面透露了一个藏宝地点。它是这样写着的: 乘船至北纬  、西经  ,16即可找到一座荒岛。岛的北岸有一大片草地,草地上有一棵橡树和一棵松树。17那里还能看到一个年代已久的绞架,那是我们曾经用来吊死叛变者的。从绞架走到橡树,记住走了多少步;到了橡树之后,向右转个直角再走这么多步,在那里打个桩。然后回到绞架朝松树走,记住所走的步数。到了松树之后,向左转个直角再走这么多步,在那里也打个桩。在两个桩的中间挖掘,即可找到财宝。 这些指令清楚而明确。于是,这位年轻人租了一条船驶往南太平洋。他找到了这座岛,也找到了橡树和松树,但让他大失所望的是,绞架不见了。此时距离写下那份遗稿已经过去太长时间,风吹日晒雨淋已使绞架的木头彻底腐烂,归于泥土,当初所在的位置一点痕迹也没有留下来。 我们这位爱冒险的年轻人陷入了绝望。愤怒而狂乱的他开始在地上胡乱挖掘。但这个岛面积太大了,他的所有努力都付诸东流。一无所获的他只得返航。如今,那财宝可能还在岛上埋着呢! 这是一个不幸的故事,但更为不幸的是,如果这个小伙子懂点数学,特别是懂得如何运用虚数,他或许能够找到财宝。现在让我们为他找找看,尽管对他来说已经太晚了。 图11 用虚数寻宝 把这个岛看成一个复数平面。过两树的根画出一轴(实轴),过两树的中点作另一轴(虚轴)与实轴垂直(见图11)。取两树距离的一半作为我们的长度单位,于是可以说,橡树位于实轴上的-1点,松树位于+1点。我们不知道绞架在哪里,不妨用希腊字母Γ(这个字母的样子倒像个绞架!)来表示它的假设位置。由于该位置并不一定在两根轴中的某一轴上,所以应把Γ看成一个复数,即Γ=a+bi。 现在我们来做些简单的计算,别忘了前面讲过的虚数的乘法规则。如果绞架在Γ,橡树在-1,则两者的方位距离为 -1-Γ=-(1+Γ)。 同样,绞架与松树的方位距离为1-Γ。根据上述规则,将这两段距离分别沿顺时针(向右)和逆时针(向左)旋转90°,就是把它们分别乘以-i和i,这样便求出了我们打的两根桩的位置: 第一根桩:(-i)[-(1+Γ)]+1=i(Γ+1)+1, 第二根桩:(+i)(1-Γ)-1=i(1-Γ)-1。 由于财宝在两根桩的正中间,所以我们应求出上述两个复数之和的一半,即 [i(Γ+1)+1+i(1-Γ)-1]=(iΓ+i+1+i-iΓ-1)=(2i)=i。 由此可见,Γ所表示的绞架的未知位置已经从我们的运算过程中消失了。无论绞架在哪里,财宝都必定在+i这个点上。 因此,如果这个年轻人能做这么一点简单的数学运算,他就无须在整个岛上挖来挖去,而只要在图11中打×的地方寻找财宝。 如果你仍然不相信,要找到财宝完全不需要知道绞架的位置,你可以在一张纸上标记出两棵树的位置,再为绞架假设几个不同的位置,然后按照羊皮纸上的指令去做。你将总是得到复数平面上对应于+i的那个位置! 通过运用-1的平方根这个虚数,我们还找到了另一项隐秘的财宝:我们惊讶地发现,普通的三维空间能与时间结合成受四维几何学规则支配的四维空间。我们将在接下来的某一章讨论爱因斯坦的思想和他的相对论,届时会回到这一发现。 [book_chapter]第二部分 空间、时间和爱因斯坦 [book_title]第三章 空间的不寻常性质 一、维数和坐标 我们都知道什么叫空间。但要精确地定义这个词的意思,我们恐怕又会张口结舌。我们也许会说,空间就是那个我们可以在其中前后、左右、上下移动的包围着我们的东西。存在着三个互相垂直的独立方向,这是我们生活于其中的物理空间的最基本的性质之一;我们说,这个空间是三个方向的或三维的。空间中的任何位置都可以通过这三个方向来确定。如果我们来到一座陌生的城市,向旅店服务员询问如何找到某家知名商号的办事处,那么他可能会说:“向南走5个街区,然后向右拐再走2个街区,上到7层。”以上这三个数通常被称为坐标,在这个例子中规定了城市街道、楼层和原点(旅店厅堂)的关系。不过显然,同一地点的方位也可以由其他任何一点给出,只要使用一个能正确表达新原点与目的地之间关系的坐标系就行了。只要知道新坐标系相对于旧坐标系的位置,就可以通过简单的数学运算,用旧坐标表示出新坐标。这一过程被称为坐标变换。这里不妨补充一句,这三个坐标并不一定要由代表距离的数来表达;事实上在某些情况下,使用角坐标要更加方便。 例如,纽约的地址通常用一个由街和路所组成的直角坐标系来表示,而莫斯科的地址则要换成极坐标,因为这座古老的城市是围绕着克里姆林中心城堡发展起来的,它既有从城堡辐射出去的各个街道,又有若干条同心的环路。因此人们会很自然地说,某座房子位于比如克里姆林宫正北与西北正中间(north-north-west)的第20个街区。 直角坐标系和极坐标系的另一个经典例子是俄国的海军部大厦和华盛顿的美国陆军部五角大楼,这是二战期间参与战争工作的每一个人所熟知的。 图12 这几个例子表明如何能用三个坐标来表示空间中某一点的位置,其中有些坐标是距离,有些坐标是角度。但无论选择什么系统,我们都需要三个数据,因为我们讨论的是三维空间 我们这些拥有三维空间概念的人虽然很难想象高于三维的超空间(尽管我们稍后会看到,这样的空间是存在的),但却很容易想象低于三维的子空间。平面、球面或其他任何表面都是二维的子空间,因为只需两个数就可以描述表面上的任何一点。同样,线(直线或曲线)是一维的子空间,因为只需一个数就可以描述线上的某个位置。我们还可以说,点是零维的子空间,因为一个点内没有两个不同位置。不过,谁会对点感兴趣呢! 作为三维生物的我们觉得理解线和面的几何性质要比理解三维空间的几何性质容易得多,因为我们是三维空间的一部分,可以“从外面”观察线和面。因此,我们很容易理解曲线或曲面是什么意思,而一听说三维空间也可以弯曲便会大吃一惊。 但只要稍作练习,并且了解了“曲率”一词的真实含义,你就会发现弯曲三维空间的概念其实非常简单。到下一章结束时,(我们希望)你甚至能够轻松地谈论一个初看起来非常可怕的概念,那就是弯曲的四维空间。 不过在讨论那些内容之前,我们先来做一些有关普通三维空间、二维表面和一维的线的思维训练。 二、不量尺寸的几何学 根据我们中学时的记忆,几何学是关于空间量度的科学,18其内容主要是涉及各种距离和角度之间数值关系的一大堆定理(例如,著名的毕达哥拉斯定理就与直角三角形的三条边有关)。然而,空间的许多最基本性质并不需要测量长度或角度。讨论这些内容的几何学分支被称为位置分析(analysis situs)或拓扑学(topology)19。 兹举一个典型拓扑学的简单例子。考虑一个封闭的几何面,比如一个球面,它被一张线网划分成许多区域。为此,我们可以在球面上任选一些点,用不相交的线将它们连接起来。那么,这些点的数目、相邻区域之间边界线的数目以及区域的数目之间有什么关系呢? 首先,如果把这个圆球挤成南瓜状的扁球,或者拉成黄瓜状的长条,那么点、线、区域的数目显然还和圆球时一样。事实上,我们可以取随意挤压拉扯(除了切割或撕裂)一个橡皮球时所能得到的任何封闭表面,对上述问题的表述和回答都不会有任何改变。这与一般几何学中的数值关系(比如线的长度、面积、体积之间的关系)截然不同。事实上,如果把一个正方体拉扯成一个平行六面体,或者把球体压成饼形,这些关系会发生很大变化。 对于这个已经划分成若干个区域的球体,我们现在可以将它的每一个区域都压平,这样一来,该球体就变成了一个多面体(图13);现在,不同区域的边界变成了多面体的边,原先选定的点则成了多面体的顶点。 图13 一个划分成若干区域的球体变形为一个多面体 现在,我们之前那个问题就可以重新表述成(其含义没有任何改变):一个任意形状的多面体的顶点数、边数和面数之间是什么关系? 图14显示了五种正多面体(即所有面都有同样数目的边和顶点)和一个纯粹凭想象画出的不规则多面体。 图14 五种正多面体(只可能有这五种)和一个不规则的古怪多面体 我们可以数一数这些几何体各自拥有的顶点数、边数和面数,看看这三个数之间有没有什么关系? 通过计数,我们可以制得下表。 多面体名称 顶点数V 边数E 面数F V+F E+2 四面体 4 6 4 8 8 六面体 8 12 6 14 14 八面体 6 12 8 14 14 二十面体 12 30 20 32 32 十二面体 20 30 12 32 32 “古怪体” 21 45 26 47 47 初看起来,前三栏的数字好像没有什么明确的关系。但稍作研究就会发现,顶点数V与面数F之和总是比边数E大2。于是我们可以写出这样一个数学关系: V+F=E+2。 这种关系是只适用于图14所示的这五种特殊多面体,还是适用于任何多面体呢?如果你试着画出几种不同的多面体,数出它们的顶点、边和面,你会发现上述关系依然成立。由此可见,V+F=E+2是一条一般的拓扑学定理,因为这个关系式并不依赖于对边长或面积的测量,而只涉及若干种不同的几何学单位(顶点、边、面)的数目。 我们方才发现的多面体的顶点数、边数和面数之间所满足的这一关系是17世纪著名的法国数学家笛卡儿(René Descartes)最先注意到的。稍后,另一位数学天才欧拉对它做出了严格证明,如今它被称为欧拉定理。 以下是对欧拉定理的完整证明,引自库朗(R. Courant)和罗宾斯(H. Robbins)的著作《数学是什么?》(What Is Mathematics?),20我们可以看看这种证明是如何完成的。 为了证明欧拉的公式,让我们把给定的简单多面体想象成中空的,其表面由橡皮薄膜制成[图15a]。如果切掉这个中空多面体的一个面,并把其余表面摊成一个平面[图15b]。在此过程中,多面体各个面的面积和各个边之间的角度当然都会改变。不过,该平面网络中顶点和边的数目仍与原多面体一样多,而由于切掉了一个面,多边形的数目将比原多面体的面数少一个。现在我们将证明,对于这个平面网络,V-E+F=1。于是,如果把切掉的那个面算进去,结果就成了:对于原多面体来说,V-E+F=2。 图15 对欧拉定理的证明。该图显示的是正方体的情况,但结论对于任何其他多面体都成立 首先,我们给这个平面网络中某个不是三角形的多边形画出对角线,从而把该平面网络“三角形化”。这样一来,E和F都会增加1,因此V-E+F的值保持不变。这样持续画出对角线,直到最后整个图形都由三角形所组成[图15c]。在这个三角形化的网络中,V-E+F仍和划分成三角形之前的值一样,因为画对角线并不改变这个值。 一些三角形的边位于该网络的边缘,其中有的三角形(例如△ABC)只有一条边位于边缘,有的三角形则可能有两条边位于边缘。任取一个这样的边缘三角形,把它的那些不同时属于其他三角形的部分移去[图15d]。这样一来,从△ABC,我们移去了AC边和面,留下了顶点A、B、C 和两条边AB、BC;从△DEF,我们移去了面、两条边DF、FE以及顶点F。 在△ABC类型的移去法中,E和F都减少1,而V不变,因此V-E+F保持不变。在△DEF 类型的移去法中,V减少1,E减少2,F减少1,因此V-E+F同样保持不变。以恰当的顺序逐步拿掉这些边缘三角形,直到只剩下一个三角形和它的三条边、三个顶点和一个面。对于这个简单的网络,V-E+F=3-3+1=1。但我们已经看到,随着三角形的减少,V-E+F并不发生改变,因此在原来那个平面网络中,V-E+F也必定等于1。而这个网络比原多面体少一个面,因此对于完整的多面体来说,V-E+F=2。这便证明了欧拉的公式。 欧拉公式的一个有趣推论是:只可能存在五种正多面体,即图14所示的那五种。 然而,如果认真检查一下前面几页的讨论,你也许会注意到,在绘制图14 所示的“各种不同的”多面体以及用数学推理来证明欧拉定理时,我们都作了一个隐秘的假设,导致我们对多面体的选择受到了很大限制。也就是说,我们只能选择那些没有任何孔眼的多面体。我们所说的孔眼并不是指橡皮球上的破洞那样的东西,而是类似于面包圈或橡皮轮胎当中那个闭合的窟窿。 我们只要看看图16就清楚了。这里有两个不同的几何体,它们和图14所示的几何体一样也是多面体。 现在我们来看看欧拉定理是否适用于这两个新的多面体。 图16 分别穿有一个和两个孔眼的两个立方体状的东西。其各个面不都是严格的矩形,但正如我们所看到的,这在拓扑学中无关紧要 对于第一个几何体,我们总共可以数出16个顶点、32条边和16个面;于是,V+F=32,而E+2=34,不对了。对于第二个几何体,我们总共可以数出28个顶点、46条边和30个面;V+F =58,E+2=48,同样不对。 为什么会这样呢?我们前面对欧拉定理所作的一般证明对于这两个例子为什么失效了? 问题当然在于,我们前面考虑的所有多面体都可以看成一个球胆或气球,而这里的新型中空多面体却更像轮胎或更复杂的橡胶制品。前面给出的数学证明无法运用于后面这类多面体,因为对于这类多面体,我们无法完成证明所必需的所有操作——“切掉这个中空多面体的一个面,并把其余表面摊成一个平面”。 如果拿一个球胆,用剪刀切掉它的一部分表面,你将很容易满足这个要求。但对于一个轮胎却无法做到。倘若看了图16还不相信这一点,你可以找个旧轮胎试试! 但不要以为对于这种更复杂的多面体,V、E和F之间就没有关系了。关系是有的,但有所不同。对于面包圈形的,或者说得更科学一些,对于环面形(torus)的多面体来说,V+F=E,而对于扭结形(pretzel)的多面体来说,V+F=E-2。一般说来,V+F=E+2-2N,其中N为孔眼的数目。 另一个典型的拓扑学问题与欧拉定理密切相关,那就是所谓的“四色问题”。假定有一个被划分成若干区域的球面,现在要给这些区域涂上颜色,要求任何两个相邻的区域(即拥有共同边界的区域)不能有同一种颜色。那么,要想完成这项工作,最少需要几种颜色呢?显然,两种颜色一般来说是不够用的,因为当三条边界交于一点时(比如美国地图上的弗吉尼亚州、西弗吉尼亚州和马里兰州,见图17),就需要三种不同的颜色。 图17 马里兰州、弗吉尼亚州和西弗吉尼亚州的地图(左)以及瑞士、法国、德国和意大利的地图(右) 要找到需要四种颜色的例子也不难,比如德国吞并奥地利时期的瑞士地图(图17)。21 但无论你怎么努力,也想象不出一张非得用四种以上颜色的地图,无论在球面上还是一张纸上。22看来,无论把地图构造得多么复杂,用四种颜色就足以避免边界处的任何相混了。 不过,如果这种说法是正确的,就应该能用数学方法证明它。然而,经过几代数学家的努力,仍然未能做到这一点。这是那种几乎无人怀疑、但也无人能够证明的数学陈述的一个典型案例。我们现在只能从数学上证明五种颜色总是够用的。这个证明是将欧拉关系应用于国家数、边界数和若干个国家交会的三重、四重等交点数而得出的。 这个证明非常复杂,写下来会离题太远,这里就不赘述了。读者可以在各种拓扑学著作中找到它,并且在沉思中度过一个愉快的夜晚(说不定还会一夜无眠)。如果有谁能够证明无需五种、只需四种颜色就足以给任何地图上色,或者,如果对这种说法的有效性产生怀疑,能够画出一幅四种颜色也不够用的地图,那么无论哪种情况成功了,他的大名都会经常出现在未来几个世纪的纯粹数学年鉴上。 颇具讽刺意味的是,这个上色问题在球面或平面的情况下怎么也求解不得,而对于面包圈形或扭结形等更为复杂的表面却能以相对简单的方式得到解决。例如,人们已经最终证明,无论对面包圈形的表面作怎样的划分,要使它的相邻区域的颜色有所不同,最多需要七种颜色。实际需要七种颜色的例子也已经给出。 读者如果不厌其烦,可以找一个充气轮胎和七种不同颜色的油漆给轮胎上色,使每一种颜色的区域都与另外六种颜色的区域相邻。做完之后,他就可以说他“对面包圈形的表面的确了如指掌”了。 三、把空间翻过来 到目前为止,我们一直在讨论各种表面也就是二维空间的拓扑学性质。但类似的问题显然也可以针对我们生存于其中的三维空间提出。这样一来,地图上色问题在三维情况下的推广就可以表述成:要把由不同材料制成的各种形状的镶嵌图案拼成一个空间,使得没有任何两块由同一种材料制成的镶嵌图案有共同的接触面,那么需要用多少种材料? 上色问题在球面或环面上的三维类比是什么呢?能不能想出一些不同寻常的空间,它们与普通空间的关系就如同球面或环面与普通平面的关系?初看起来,这个问题似乎没有什么意义。事实上,我们虽然很容易想到许多不同形状的表面,却往往认为只可能有一种三维空间,即我们生活于其中的那个熟悉的物理空间。但这种看法是一种危险的幻觉。只要稍微发动一下想象力,我们就能想出与欧几里得几何教科书中所讲空间截然不同的一些三维空间。 设想这类古怪空间的主要困难在于,我们本身是三维生物,我们只能“从内部”打量这个空间,而不能像在观察各种怪异表面时那样“从外部”去打量。不过,经过一番思维训练,我们是能够征服这些怪异空间的。 我们首先来建立一个性质与球面相似的三维空间模型。当然,球面的主要性质是:它没有边界,但有有限的面积;它转过来自我封闭。我们能否设想一个三维空间,它以类似的方式自我封闭,从而有有限的体积而无明确边界呢? 考虑两个球体,它们各自被自己的球面所限,就像苹果被自己的外皮所限一样。现在,设想这两个球体“相互穿过”,沿外表面连在一起。当然,这并不是说我们能把两个物体(比如两个苹果)挤得相互穿过,从而使其表皮粘连在一起。苹果能被挤碎,但永远也不会相互穿过。 或者,我们可以设想有个苹果被虫子吃出了错综复杂的通道。假定有黑色和白色两种虫子,它们彼此厌恶,在苹果内的各自通道绝不相通,尽管可以始于苹果皮上的相邻两点。一个被这两种虫子蛀来蛀去的苹果最后会像图18那样,出现两个紧密交缠、布满整个苹果内部的通道网络。然而,尽管黑虫和白虫的通道可以很接近,要想从一半迷宫走到另一半迷宫,却必须先到表面才行。如果设想通道变得越来越细,数目越来越多,最后苹果内将会有两个互相交叠的独立空间,它们仅在共同表面上相连。 图18 如果你不喜欢虫子,可以设想一种类似于纽约世界博览会的巨型球体建筑中那种双走廊双楼梯系统。设想每一套楼梯系统都盘旋穿过整个球体,但要从其中一套系统的某个点到达另一套系统的临近点,只能先走到球面上两套系统的会合处,然后再往回走。我们说这两个球体互相交叠而彼此不相干涉,你的朋友可能离你很近,但要见到他、握个手,你必须兜很大的圈子!需要注意的是,这两套楼梯系统的连接点其实与球内的任何其他点并无不同,因为总可以使整个结构变形,把连接点推到里面,把以前里面的点弄到表面。关于我们的模型,第二点要注意的是,虽然两套通道的总长度是有限的,但没有“死胡同”。你可以不断穿过走廊和楼梯,而不会被墙壁或栅栏挡住;如果你走得足够远,你最终一定能回到你的出发点。从外面审视整个结构,我们可以说,在这迷宫中穿行的人最终总会回到其出发点,因为楼梯会逐渐转到反方向。但对于处在内部而不知“外面”为何物的人来说,空间将表现为有限尺寸而无明确边界的东西。我们将在后面看到,这种没有明显边界但并非无限的“自我封闭的三维空间”在讨论整个宇宙的性质时是非常有用的。事实上,用最强大的望远镜所作的观测似乎表明,在如此遥远的距离处,空间开始弯曲,显示出一种返折回来自我封闭的明显趋势,就像苹果被虫子蛀出通道的那个例子一样。但在讨论这些令人兴奋的问题之前,我们还得再了解一下空间的其他性质。 关于苹果和虫子,我们还没有讲完。下一个问题是:能否把一个被虫子蛀过的苹果变成一个面包圈呢?当然,这并不是说要使苹果尝起来像面包圈,而只是说让它看起来像面包圈;我们在讨论几何学,而不是烹饪术。让我们取一个上一节所讨论的“双苹果”,也就是两个“相互穿过”且表皮“粘连在一起”的新鲜苹果。假设有一只虫子在其中一个苹果中蛀出了一条环形通道,如图19所示。请记住,是在一个苹果中蛀的,所以通道外的每一点都是属于两个苹果的双重点,而通道内则只有那个未被虫蛀过的苹果的物质。这样一来,我们这个“双苹果”就有了一个由通道内壁组成的自由面(图19a)。 图19 如何将一个被虫子蛀过的双苹果变成一个面包圈。不是魔术,只有拓扑! 你能改变这个受损苹果的形状,将它变成一个面包圈吗?当然,这要假设苹果有很大的可塑性,可以随意捏成什么样子,唯一的条件是苹果不会发生破裂。为了便于操作,我们可以把苹果切开,只要在完成所需的变形之后还能将切口粘起来。 首先,我们把形成“双苹果”的两个部分的表皮解开,从而将两个苹果分开(图19b)。为了便于在接下来的各个步骤中进行追踪,我们用Ⅰ和Ⅰ′这两个数字来表示这两张剥离开的表皮,最后我们还会把它们重新粘起来。接着,将那个包含着虫蛀通道的苹果切开(图19c),这便切出了两个新的面,分别标记为Ⅱ、Ⅱ′和Ⅲ、Ⅲ′,以后还会把它们粘回去。通道的自由面也显示出来了,它必定会成为面包圈的自由面。现在,让我们按照图19d所示来拉伸这几个碎块,这个自由面被拉伸成了很大一块(不过按照我们的假定,这里使用的材料可以任意伸缩!)。与此同时,切开的面Ⅰ、Ⅱ、Ⅲ的尺寸都减小了。当我们对“双苹果”的前一半做手术时,也必定会把另一半压缩成樱桃大小。现在,我们要开始沿着切口往回粘了。第一步很容易,先把Ⅲ、Ⅲ′粘在一起,得到图19e所示的形状。再把缩小的苹果放在由此形成的两钳口之间。收拢两钳口,球面Ⅰ将与Ⅰ′重新粘在一起,切面Ⅱ和Ⅱ′也将合在一起。这样,我们便得到了一个光滑而精致的面包圈。 做这一切有什么意义呢? 没有什么意义,只是让你在想象中做做几何学练习,这种思维体操有助于你理解弯曲空间和自我封闭空间这样的异乎寻常的东西。 如果你愿意再扩展一下想象力,我们可以看看上述做法的一个“实际应用”。 你大概从未想过,你的身体也曾有过面包圈的形状吧。事实上,任何生命体在其发育的最初阶段(胚胎阶段)都要经历所谓的“原肠胚”阶段。在这个阶段中,它呈球形,一条宽阔的通道横穿其中。食物从通道的一端进入,待生命体摄取了有用成分之后,剩下的东西从另一端排出。在发育成熟的生命体中,内部通道变得更细、更复杂,但主要原则依然不变:面包圈形的所有几何性质都没有改变。 好了,既然你也是个面包圈,现在尝试逆着图19的方式作个变形——(在思想中!)努力把你的身体变成一个拥有内部通道的双苹果。特别是,你会发现,你身体中彼此部分交叠的不同部分将会形成“双苹果”的果体,而包括地球、月亮、太阳和星辰在内的整个宇宙将被挤入内部的圆形通道! 试着画画看它是什么样子。如果你画得不错,连达利(Salvado Dali)本人也要承认你的超现实主义画作技高一筹了!(图20) 图20 里面翻到外面的宇宙。这幅超现实主义画作画的是一个人边在地球表面上行走,边抬头看星星。这幅画按照图19所示的方法作了拓扑变换。于是,地球、太阳和星辰都挤在贯穿人体的一个狭窄通道中,周围则是他的内部器官 虽然本节已经很长,但在结束它之前,我们还要讨论一下左手系、右手系物体及其与空间一般性质的关系。介绍这个问题最方便的办法是从一副手套谈起。比较一下一副手套(图21),你会发现它们在各方面都是相同的,但有一个重大差异:你无法把左手套戴到右手上,也无法把右手套戴到左手上。你可以随意将它们扭来转去,但左手套永远是左手套,右手套永远是右手套。左手系物体与右手系物体的这种区别还可见于鞋子的形状、汽车的转向机构(美国的和英国的)、高尔夫球棍以及其他许多物体。 图21 右手系和左手系物体看起来非常相像,但极为不同 另一方面,像礼帽、网球拍等许多东西就没有显示出这种差别。没有人会傻到要去商店订购几只左手用的茶杯。如果有人让你找邻居借一个左手用的活动扳手,那肯定是个恶作剧。那么,这两种东西有什么区别呢?稍作思考你就会注意到,像礼帽和茶杯这样的东西都有一个我们所谓的对称平面,沿这个平面可将它们切成两个相等的部分。而手套和鞋子就没有这样的对称平面。无论你如何努力,你都无法把一只手套切成两个相同的部分。如果某个物体没有对称平面,或如我们所说是非对称的,那么它就有左手系和右手系两种类型。其差别不仅表现于手套或高尔夫球杆这样的人造物体,在自然界中也很常见。例如,存在着两种蜗牛,它们在所有其他方面都相同,唯独建房子的方式不同:一种蜗牛的壳沿顺时针盘旋,另一种则沿逆时针盘旋。甚至连分子这种组成各种不同物质的微粒,也常常有左旋和右旋两种形态,就像左、右手套以及顺时针和逆时针盘旋的蜗牛壳一样。当然,你是看不见分子的,但这种不对称性可以显示于这些物质的晶体形态和某些光学性质。例如,糖有左旋糖和右旋糖两类;还有两种吃糖的细菌,每种细菌只吃与之对应的那种糖,信不信由你。 如前所述,将一个右手系物体(例如一只右手套)变成左手系物体似乎是完全不可能的。但果真如此吗?我们能否设想出某种可以做到这一点的奇妙空间呢?为了回答这个问题,让我们从生活在面上的扁平居民的角度来考察它,我们可以从更优越的三维地位来观察这些居民。图22描绘了只有两维空间的扁平国的可能居民的几个例子。那个手提一串葡萄的站立者可称为“正面人”,因为他只有“正面”而没有“侧面”。而他身边的动物则是一头“侧面驴”,或者说得更确切些,是一头“右侧面驴”。当然,我们也能画出一头“左侧面驴”。由于这两头驴都被限定于这个面上,所以从二维的观点来看,它们的不同就如同我们三维空间中的左右手套。你无法将“左驴”与“右驴”交叠起来,因为要使它们鼻子挨着鼻子、尾巴挨着尾巴,就得把其中一头驴子翻个个儿,这样一来,它可就四脚朝天,无法站立咯。 图22 生活在平面上的二维“影子生物”的样子。这种二维生物很不“现实”。此人有正面而无侧面,他无法将手里的葡萄送入口中。那头驴子倒可以吃到葡萄,但它只能向右走,要想左移只能退着走。驴子退着走倒并非罕见,但毕竟不太像样 不过,若将一头驴子从面上取出,在空间中翻转一下再放回去,两头驴子就会变得一样。同理也可以说,若把一只右手套沿第四方向拿出我们这个空间,适当地旋转一下再放回去,就可将它变成一只左手套。但我们的物理空间并无第四方向,所以只能认为上述方法是不可能做到的。那么,有没有别的办法呢? 现在,我们还是回到二维世界,不过不是考虑图22所示的普通平面,而是考虑所谓“莫比乌斯面”(surface of Möbius)的性质。这种面的名字得自于一个世纪以前最早对它进行研究的德国数学家。拿一个长长的纸条,将其一端拧个弯,然后把两端粘成一个环,便轻而易举地得到了莫比乌斯面。图23显示了这个环的具体做法。这种面有许多特殊性质,其中一个性质很容易发现:拿剪刀沿一条与边缘平行的线(沿着图23中的箭头)剪一圈,你一定会预期这样会把这个环剪成两个分离的环。但做了之后你就会发现猜错了:你得到的不是两个环,而是一个环,它是原有环的两倍长、一半宽! 图23 莫比乌斯面和克莱因瓶 让我们看看一头影子驴沿着莫比乌斯面走一圈会发生什么。假定它从位置1(图23)出发,此时看它是头“左侧面驴”。从图上可以清楚地看出,它走啊走,经过了位置2和位置3,最后又接近了出发点。但不仅你感到奇怪,它也感到纳闷,自己竟然处在蹄子朝上的古怪位置(位置4)。当然,它能在面上转一下使蹄子落地,但这样一来,头的朝向又不对了。 简而言之,沿着莫比乌斯面走一圈之后,我们这头“左侧面驴”变成了“右侧面驴”。别忘了,在此过程中,驴子一直处在面上而未被拿出来在空间翻转。于是我们发现,在一个扭曲的面上,只要绕过扭曲处,左手系物体就可以变成右手系物体,反之亦然。图23所示的莫比乌斯带是被称为“克莱因瓶”(如图23右边所示)的更一般的面的一部分。这种瓶只有一个面,自我封闭而没有明显的边界。如果这在二维的面上是可能的,那么同样的情况也可以在三维空间中发生,只要以恰当的方式将它扭曲。当然,设想空间中的莫比乌斯扭曲绝非易事。我们不能像看驴所在的面那样从外部来看我们的空间,当我们身在其中时,看清楚事物总是很难的。但天文空间自我封闭并以莫比乌斯的方式发生扭曲,这并非不可能。 如果真是如此,那么宇宙旅行家回到地球时,其心脏将位于胸腔右侧。手套和鞋子的制造商或许能够得益于生产过程的简化:他们只需制造同一种鞋子和手套,然后把一半物品装入飞船环绕宇宙一周,这样就能满足另一半的手脚所需了。 我们就用这个荒诞的奇思异想来结束关于不寻常空间的不寻常性质的讨论吧。 [book_title]第四章 四维世界 一、时间是第四维 第四维这个概念通常被神秘和怀疑所笼罩。我们这些只有长、宽、高的生物如何敢谈及四维空间呢?凭借我们全部的三维智力,有可能设想一个四维的超空间吗?一个四维的立方体或球体会是什么样子呢?我们说“想象”一条尾巴披鳞、鼻孔喷火的巨龙,或者一架带有游泳池、机翼上有两个网球场的超级客机时,实际上是在心灵中描绘这些东西真的突然出现在我们面前时的样子。我们是以那个所有普通物体(包括我们自己在内)都位于其中的大家所熟悉的三维空间为背景来描绘这幅图像的。如果这就是“想象”一词的含义,我们就无法以普通三维空间为背景来想象一个四维的物体,一如我们无法将三维物体压入平面。不过且慢,在某种意义上我们的确可以将一个三维物体压入平面,那就是在平面上画出这个三维物体。不过,在所有这些情况下,我们当然不是用一台水压机或任何其他物理的力量来实现的,而是用所谓的几何“投影”法进行的。由图24立即可以看出将物体(例如马)压入平面的这两种方法的区别。 图24 将一个三维物体“压”入二维表面的错误方法和正确方法 通过类比,我们现在可以说,虽然不可能把一个四维物体完全“压”入三维空间,但可以讨论各种四维物体在我们这个三维空间中的“投影”。不过要记住,正如三维物体的平面投影是二维图形或平面图形,四维超物体在我们这个普通三维空间中的投影是立体图形。 为了把问题说得更清楚一些,我们先来考虑生活在面上的二维影子生物会如何构想一个三维立方体。不难想象,作为优越的三维生物,我们可以从上面即从第三个方向来打量二维世界。将立方体“压”入平面的唯一途径就是以图25所示的方法将它“投影”到那个平面上。旋转这个立方体,可以得到各种其他投影。通过观察这些投影,我们的二维朋友们至少能对这个被称为“三维立方体”的神秘形体的性质形成某种认识。他们无法“跳出”自己的面,像我们一样来看这个立方体。不过仅仅通过观察投影,他们也能说(比如)这个立方体有八个顶点和十二条边。现在看图26,你会发现自己的处境和那些只能看到普通立方体在面上投影的可怜的二维影子生物完全相同。事实上,图中那家人正在惊愕万分地研究的那个复杂的古怪结构,正是一个四维的超正方体在我们这个普通三维空间中的投影。23 图25 二维生物们正在惊奇地打量一个三维立方体在其表面上的投影 图26 四维空间的来客!一个四维超正方体的正投影 认真考察这个形体,你很容易看到让图25中的影子生物困惑不已的那些特征:普通立方体在平面上的投影是两个正方形,一个套在另一个里面,且顶点与顶点相连;而超正方体在普通空间中的投影则是两个立方体,一个套在另一个里面,顶点也以类似的方式相连。数一数就会看到,一个超正方体共有16个顶点、32条边和24个面。好一个正方体,不是吗? 现在我们来看看四维球体是什么样子。为此,我们最好先看一个较为熟悉的例子,即一个普通球体在平面上的投影。例如设想将一个标记有大陆和海洋的透明球体投射到一面白墙之上(图27)。在这一投影中,两个半球当然会彼此重叠,而且从投影上看,我们也许会以为美国纽约和中国北京距离很近。但这只是一种表面的印象。事实上,投影上的每一点都代表实际球体上两个相对的点,一架从纽约飞往中国的飞机,它在球体上的投影将先移到平面投影的边缘,然后再返回来。虽然两架不同飞机在图上的投影可能会重叠,但如果它们“实际”在地球的两侧飞行,那是不会相撞的。 图27 地球的平面投影 这些便是普通球体的平面投影的性质。只要对想象力稍作发挥,我们便不难看出四维超球体的空间投影是什么样子。正如普通球体的平面投影是两个(点对点)叠在一起、只沿外圆周相连的圆盘,超球体的空间投影也一定是两个彼此交叠且沿外表面相连的球体。关于这种特异的结构,我们已经在上一章作为类似于封闭球面的三维封闭空间的例子作了讨论。这里只需补充一句:四维球体的三维投影不过就是我们在那里讨论的由两个沿整个外皮长在一起的普通苹果所形成的双苹果罢了。 同样,使用这种类比法,我们也能回答关于四维形体性质的其他许多问题,尽管我们无论如何也没法在我们的物理空间中“想象”出第四个独立的方向。 不过,只要再稍作思考,你就会发现,根本没有必要把第四个方向看得很神秘。事实上,有一个我们几乎每天都在用的词可以表示物理世界中这第四个独立的方向,那就是“时间”。我们常常用时间和空间来描述周围发生的事件。谈到宇宙中发生的任何事情时,无论是在街上邂逅了一个朋友,还是遥远星体的爆发,我们通常不仅会说它在哪里发生,还会说它是何时发生的。于是,除了表示空间位置的三个方向要素之外,我们又增加了一个要素——时间。 如果作进一步思考,你还可能意识到,任何实际物体都有四个维度:三个空间维度,一个时间维度。比如你所住的房屋就是沿长、宽、高和时间延展的。时间的延展从盖房时算起,一直到它最后被烧毁、被某个拆迁公司拆掉或因年久失修而倒塌为止。 的确,时间方向与空间的三维很不相同。时间间隔是由钟表度量的:嘀嗒声表示秒,叮咚声表示小时,而空间间隔则是由尺子度量的。你能用同一把尺子来度量长、宽、高,却不能把尺子变成钟表来度量时间。此外,你在空间中可以前移、后移或上移,然后再回来,而在时间中你却退不回来,只能从过去到将来。不过,尽管时间方向与空间的三个方向之间存在着所有这些区别,我们仍然可以把时间作为物理世界的第四个方向,不过别忘了它与空间不大相同。 在选择时间作为第四维时,想象本章开头讨论的四维形体要简单得多。例如,你还记得四维正方体的投影所切出的那个奇特形体吗?它竟然有16个顶点、32条边和24个面!难怪图26中的那些人盯着这个几何怪物会瞠目结舌。 不过从我们的新观点来看,四维正方体只是个存在了一段时间的普通立方体罢了。假定你在5月7日用12根铁丝制成了一个立方体,一个月后又把它拆掉。那么,这样一个立方体的每一个顶点都应被看成沿时间方向有长为一个月的一条线。你可以给每个顶点挂一本小日历,每天翻一页以显示时间的前进。 现在很容易数出这个四维形体的边数。它刚开始存在时有12条空间边,以及描述各个顶点延续时间的8条“时间边”,结束存在时又有12条空间边,24因此总共有32条边。用类似的方法可以数出它有16个顶点:5月7日有8个空间顶点,6月7日又有8个空间顶点。作为练习,请读者以同样的方式数一数我们四维形体的面数。在此过程中要记住,其中一些面是原立方体的普通正方形面,其他面则是立方体原来的边从5月7日延伸到6月7日所形成的“半空间半时间”面。 图28 我们这里针对四维立方体所讲的内容当然也适用于任何其他几何体或物体,无论是死的还是活的。 特别是,你可以设想自己是一个四维形体,类似于一根长长的橡胶棒从你出生之时延伸到你生命结束。不幸的是,我们在纸上画不出四维物体,因此在图29中,我们尝试以二维影子人为例来说明这种想法,他把与他所生活的二维平面垂直的空间方向认作时间方向。这幅图只描绘了这个影子人整个生命的很小一部分,整个生命过程需要用一根长得多的橡胶棒来表示:开端很细,此时他是婴儿,在很多年里一直变动不定,直到死时才获得恒定的形状(因为死人不会动),然后开始解体。 图29 说得更确切一些,这根四维棒是由无数分离的纤维组成的,每根纤维都由分离的原子所组成。在整个生命过程中,大多数纤维保持成一束,只有少量纤维在理发或剪指甲时离去。由于原子是不灭的,所以人死后的身体分解实际上应被视为各个纤维朝四面八方分散开来(也许除了形成骨骼的那些纤维)。 用四维时空几何的语言来说,这样一条代表每一个物质微粒历史的线被称为它的“世界线”。同样,我们把形成一个复合体的一束世界线称为“世界束”。 图30给出了一个天文学的例子,显示了太阳、地球和彗星的世界线。25和前面那个例子一样,我们让时间轴与二维空间(地球轨道平面)垂直。在这幅图中,太阳的世界线由一条与时间轴平行的直线来表示,因为我们认为太阳是不动的。26地球的轨道非常接似于圆,地球的世界线是一条围绕太阳世界线盘旋的螺旋线,而彗星的世界线则先靠近、后远离太阳的世界线。 图30 我们看到,从四维时空几何的角度来看,宇宙的地形学和历史融合成了一幅和谐画面。我们只需考虑一束代表个体原子、动物或星辰运动的缠结在一起的世界线就可以了。 二、时空等价 在把时间看成与三个空间维度多多少少等价的第四维时,我们碰到了一个非常困难的问题。度量长、宽、高时,我们可以用同一种单位,比如英寸或英尺。但时间长度既不能用英寸也不能用英尺来度量,我们必须使用完全不同的单位,比如分钟或小时。那么,它们如何比较呢?如果想象一个长宽高均为1英尺的四维正方体,它在时间上应当延伸多长才能使所有四个维度相等呢?是1秒、1小时,还是像上面那个例子中的1个月?1小时比1英尺更长还是更短? 初看起来,这个问题似乎毫无意义,但细想一下就会找到一个合理方法来比较长度和时间延续。我们常常听说,某人住在市区,“乘公共汽车需要20分钟”,某个地方“乘火车只需5小时即可到达”。这里,我们是通过乘坐某种交通工具所需的时间来指明距离的。 于是,如果可以就某种标准速度达成一致,我们就应当能用长度单位来表示时间间隔,反之亦然。当然,被选作空间与时间之间基本变换因子的标准速度必须同样基本和一般,无论人采取什么行动或者物理环境如何,都应保持不变。物理学中已知具有这种一般性的速度只有光在真空中传播的速度。虽然通常称这种速度为“光速”,但称之为“物理相互作用的传播速度”要更好,因为在物体之间起作用的任何种类的力,无论是电吸引力还是引力,都以相同的速度在真空中传播。此外,我们后面还会看到,光速是任何可能的物质速度的上限,任何物体都不可能以大于光速的速度穿过空间。 17世纪著名的意大利物理学家伽利略第一次尝试测量光速。一个漆黑的夜晚,他和助手带着两盏配有机械遮板的灯来到佛罗伦萨近郊的旷野,彼此相距几英里站定。伽利略在某一时刻打开灯,朝着助手的方向发出一束光(图31a)。助手已被告知,一看到伽利略那里发出的光就要打开自己的灯。既然光从伽利略到助手再返回伽利略都需要一定时间,所以从伽利略打开灯到看见来自助手的光线,也应有某个时间延迟。伽利略的确注意到了一个小的时间延迟,但是当他让助手站到两倍远的地方再重复这个实验时,观察到的延迟却没有增大。光显然走得太快了,走几英里的距离几乎不用什么时间。观察到的时间延迟其实缘于伽利略的助手不可能在看到光的一瞬间立即打开灯——我们今天称之为反应延迟。 图31 虽然伽利略的实验没有导出任何正面结果,但他的另一项发现,即发现了木星的卫星,却为第一次实际测量光速提供了基础。1675年,丹麦天文学家罗默(Roemer)在观测木星卫星的食时,注意到这些卫星消失在木星阴影中的时间间隔并不总是相同,而是随着那一特殊时刻木星与地球之间的距离而变长或变短。罗默立刻意识到(你在考察图31b之后也会意识到),这种效应并非缘于木星的卫星运动不规则,而仅仅是由于木星与地球的距离变动导致我们看到这些食有不同的延迟。由他的观测结果可以得出,光速约为每秒185 000英里。难怪伽利略用他的设备测不出光速,因为光从他的灯传到助手再传回来只需十万分之几秒! 不过,伽利略用其粗糙的遮光灯做不到的事情,后来用更精密的物理仪器做到了。图31c是法国物理学家斐索(Fizeau)最先使用的以较短距离测量光速的设备,其主要部件是安在同一根轴上的两个齿轮。如果我们沿着与轴平行的方向看这两个齿轮,那么第一个齿轮的齿对着第二个齿轮的齿缝。于是,无论轴如何转动,沿着与轴平行的方向射出的细光束都无法穿过这套齿轮。现在假定这套齿轮系统高速旋转。由于透过第一个齿轮齿缝的光线需要一些时间才能到达第二个齿轮,所以如果在此期间这套齿轮系统恰好转过半个齿缝,那么这束光就能穿过第二个齿轮了。这里的情况非常类似于汽车以恰当的速度沿一条装有红绿灯同步系统的街道行驶。如果这套齿轮的转速提高一倍,那么光到达第二个齿轮时正好会射到转来的下一个齿上,光的行进将再次受阻。但如转速继续提高,光将再次能够穿过,因为光束到达之前这个齿已经转了过去,而下一个齿缝恰好会在这个时刻转来让光穿过去。因此,只要注意光的相继出现和消失所对应的转速,就能估算出光在两齿轮之间穿行的速度。为了方便实验并且减小所需的转速,我们可以让光在两齿轮之间多走些距离,这可以借助于图31c中所示的几面镜子来实现。在这个实验中,当齿轮以1 000转每秒的速度旋转时,斐索第一次看到光穿过了距离自己最近那个齿轮的齿缝。这说明在此转速下,光从一个齿轮到达另一个齿轮时,齿轮的齿已经转过了半个齿距。由于每一个齿轮都有50个相同尺寸的齿,所以齿距为齿轮周长的1/100,光穿过这段距离的时间也就是齿轮转动一整圈所需时间的1/100。斐索将这些计算结果与光从一个齿轮传到另一个齿轮的距离联系起来,得到光速为300 000公里每秒或186 000英里每秒,它与罗默观测木星卫星所得到的结果几乎相同。 继这些先驱者的工作之后,人们又用天文学和物理学的方法做了大量独立测量。目前,光在真空中的速度(通常用字母c来表示)的最佳估计值是 c = 299 776公里/秒或186 300英里/秒。 天文学距离非常巨大,如果用英里或公里来度量它们,可能要写满好几张纸,此时极高的光速就成了一个方便的度量标准。于是,天文学家会说某颗星星距离我们5“光年”远,就像我们说乘火车去某个地方需要5小时一样。由于1年有31 558 000秒,1光年就对应于31 558 000×299 776 = 9 460 000 000 000公里或5 879 000 000 000英里。用“光年”来度量距离,实际上已经把时间看成一个维度,把时间单位看成一种空间量度了。我们也可以把程序反过来,说“光英里”,意指光走1英里的距离所需的时间。使用上述光速值,我们得到1光英里等于0.000 005 4秒。同样,“1光英尺”是0.000 000 001 1秒。这便回答了我们在上一节所讨论的那个四维正方体的问题。如果该正方体的空间尺寸(space-dimensions)为1英尺×1英尺×1英尺,那么其空间持续(space-duration)仅为0.000 000 001 1秒。如果这个边长1英尺的正方体存在了一整月的时间,就应把它看成一根沿着时间轴的方向被拉得极长的四维棒。 三、四维距离 既已解决沿着空间轴和时间轴使用什么可比较的单位这个问题,我们现在可以问,应当如何理解四维时空世界中两点之间的距离?务必记住,现在每一个点都对应于通常所说的“一个事件”,即位置与时间的结合。为了讲清楚这一点,我们不妨看看以下两个事件: 事件1:1945年7月28日上午9点21分,位于纽约第五大道和五十街交叉口1楼的一家银行被劫。27 事件2:同一天上午9点36分,一架军用飞机在雾中撞在纽约三十四街在第五、六大道之间帝国大厦79楼的墙上(图32)。 图32 这两个事件在空间上南北相隔16个街区,东西相隔1/2个街区,上下相隔78层楼;在时间上相隔15分钟。显然,要想描述这两个事件的空间间隔,并不一定要记录下街道的数字和楼层数,因为借助于著名的毕达哥拉斯定理,即空间中两点之间的距离等于单个坐标距离的平方和的平方根,可以将它们结合成一个直接的距离(图32右下角)。而为了运用毕达哥拉斯定理,当然必须先用可比较的单位(例如英尺)将所有所涉距离表达出来。如果一个南北街区长200英尺,一个东西街区长800英尺,帝国大厦每个楼层的平均高度为12英尺,那么三个坐标距离就是南北方向3 200英尺,东西方向400英尺,竖直方向936英尺。现在,运用毕达哥拉斯定理可以得出,两个地点之间的直接距离为 英尺 如果时间作为第四个坐标的概念有任何实际的有效性,我们现在应当能把两个事件的空间距离3360英尺与时间距离15分钟结合起来,用一个数来刻画这两个事件之间的四维距离。 按照爱因斯坦原来的想法,只需把毕达哥拉斯定理作简单的推广,便可实际确定这样一个四维距离。在确定各个事件之间的物理关系方面,此距离要比单个的空间时间间隔更为基本。 当然,要把空间和时间的数据结合起来,我们必须用可比较的单位将其表示出来,就像用英尺来表示街区长度和楼层高度一样。前已看到,用光速作为变换因子,便很容易做到这一点。于是,15分钟的时间间隔就成了800 000 000 000“光英尺”。现在,对毕达哥拉斯定理作简单的推广,我们便可把四维距离定义为所有四个坐标距离(即三个空间间隔和一个时间间隔)的平方和的平方根。然而在此过程中,我们完全取消了空间与时间的任何差别,这等于实际承认空间度量和时间度量可以相互转换。 然而,任何人都无法用布遮住一根尺子,挥动一下魔杖,念念“空间去,时间来,变”这样的咒语,就能把它变成一个闪闪发光的全新闹钟!甚至连伟大的爱因斯坦也不例外。(图33) 图33 爱因斯坦教授从来就做不到这个,但他做的比这强得多 于是,若要在毕达哥拉斯公式中将时间与空间结合成一体,就必须采用某种不寻常的方法,以保留它们的一些自然差别。 根据爱因斯坦的看法,在推广的毕达哥拉斯定理的数学表达式中,可以通过在时间坐标的平方前使用负号来强调空间距离与时间延续之间的物理差别。这样一来,两个事件之间的四维距离就可以表示成三个空间坐标的平方和减去时间坐标的平方,然后开平方。当然,首先要用空间单位来表示时间坐标。 于是,银行遭劫与飞机撞击帝国大厦之间的四维距离应当这样来计算: 。 第四项之所以比前三项大得多,是因为这个例子来自“日常生活”,而以日常生活的标准来看,合理的时间单位的确太小了。如果不是以纽约市发生的两个事件,而是以宇宙中发生的一个事件作为例子,我们就能得到大小更为相当的数值了。例如,第一个事件是1946年7月1日上午9点整一颗原子弹在比基尼环礁爆炸,第二个事件是同一天上午9点10分一颗陨石落在火星表面,其时间间隔即为540 000 000 000光英尺,空间距离则约为650 000 000 000 英尺,两者大小相当。 在这个例子中,两个事件之间的四维距离是: 英尺=36×1010英尺, 在数值上与纯空间距离和纯时间间隔都非常不同。 当然,有人也许会反对这样一种看似不合理的几何学,因为它对其中一个坐标的处理不同于其他三个坐标。但不要忘了,任何旨在描述物理世界的数学系统都必须符合事物;如果空间和时间在其四维结合中的表现的确有所不同,那么四维几何学的定律也必须有对应的样式。而且还有一种简单的数学补救办法,可以使爱因斯坦的时空几何学看起来与我们在学校里学习的古老而美好的欧几里得几何学完全一样。这种补救办法就是把第四个坐标看成纯虚数,它是德国数学家闵可夫斯基(Hermann Minkovskij)提出的。大家也许还记得,本书第二章讲过,一个普通的数乘以就成了一个虚数,用这种虚数来解各种几何学问题是非常方便的。于是,根据闵可夫斯基的说法,要把时间看成第四个坐标,不仅要用空间单位来表示它,还要乘以。这样一来,那个例子中的四个坐标距离就成了: 第一坐标:3 200英尺 第二坐标:400英尺 第三坐标:936英尺 第四坐标:8×1011i光英尺。 现在,我们也许可以把四维距离定义为所有四个坐标距离的平方和的平方根了。事实上,由于虚数的平方总是负的,所以用闵可夫斯基坐标写出的普通毕达哥拉斯公式将与用爱因斯坦坐标写出的似乎不太合理的公式在数学上等价。 有一个故事,说的是一位患风湿病的老人问自己的健康朋友是如何避免这种病的。 回答是:“我这辈子每天早上都会洗个冷水澡。” “噢,”前者喊道,“那你是患了冷水澡病!” 于是,如果你不喜欢那个似乎会引起风湿病的毕达哥拉斯定理,你可以把它改成虚时间坐标这种冷水澡病。 由于时空世界里的第四个坐标是虚的,所以必须考虑两种在物理上不同的四维距离。 事实上,在前面讨论的纽约事件那样的情况下,两个事件之间的三维距离在数值上要小于时间间隔(用恰当的单位),毕达哥拉斯定理中根号下的数是负的,所以我们得到的推广的四维距离是虚的。而在其他一些情况下,时间延续要小于空间距离,因此根号下得到的是正数,这当然意味着在这些情况下,两个事件之间的四维距离是实的。 如上所述,既然空间距离被看成实的,而时间延续被看成纯虚的,我们也许可以说,实的四维距离与普通的空间距离关系更近,而虚的四维距离与时间间隔关系更近。根据闵可夫斯基使用的术语,前一种四维距离被称为类空(raumartig)间隔,后一种被称为类时(zeitartig)间隔。 我们将在下一章看到,类空间隔可以转变为正规的空间距离,类时间隔也可以转变为正规的时间间隔。然而,这两者一个为实数,一个为虚数,这给时空的相互转变造成了不可逾越的障碍,因此我们不可能把尺子变成时钟,也不可能把时钟变成尺子。 [book_title]第五章 空间和时间的相对性 一、空间和时间的相互转变 虽然显示空间和时间在四维世界中的统一性的数学努力并没有完全消除距离与时间延续之间的差别,但的确揭示出这两个概念之间具有高度的相似性,其程度要比在爱因斯坦之前的物理学中大得多。事实上,各个事件之间的空间距离和时间间隔,现在只能认为是这些事件之间基本的四维距离在空间轴和时间轴上的投影,从而四维坐标系的旋转可以使距离在部分程度上转变为时间的延续,或者使时间的延续在部分程度上转变为距离。不过,四维时空坐标系的旋转是什么意思呢? 我们先来考虑图34a中由两个空间坐标所组成的坐标系,并且假定有两个固定点相距为L。将这一距离投影在坐标轴上,我们发现这两个点沿第一个轴的方向相距a英尺,沿第二个轴的方向相距b英尺。若把该坐标系旋转一个角度(图34b),则同样的距离在两个新坐标轴上的投影将与之前不同,新的值为a′和b′。然而根据毕达哥拉斯定理,两个投影的平方和的平方根在两种情况下是一样的,因为它对应着那两个点的实际距离,不会因为坐标系的旋转而改变。因此, 。 所以说,虽然投影的特殊值是偶然的,取决于坐标系的选择,但其平方和的平方根不会随着坐标系的旋转而变化。 图34 现在我们再来考虑一个轴对应着距离、一个轴对应着时间延续的坐标系。此时之前例子中的两个固定点就成了两个固定的事件,而在两个轴上的投影则分别表示它们的空间距离和时间间隔。如果这两个事件就是上一章所讨论的银行遭劫和飞机失事,我们便可以画一张图(图35a),它非常类似于表示两个空间坐标的图34a。那么,怎样才能旋转坐标轴呢?答案非常出乎意料,甚至令人困惑:要想旋转时空坐标系,请上汽车。 假定我们真的在7月28日那个多事之晨坐上了一辆沿第五大道行驶的公共汽车。从自我中心的观点来看,此时我们最关心被劫的银行和飞机失事地点离我们的汽车有多远,倘若距离决定了我们能否看到这些事件。 图35 图35a画出了汽车世界线的相继位置以及银行遭劫、飞机失事这两个事件。你会立刻注意到,从汽车上观察到的距离不同于比如站在街角的交警所记录下来的距离。由于汽车正在沿大道行驶,比如说速度是每三分钟过一个街区(这在拥挤的纽约交通中并非罕见),所以从汽车上看,这两个事件的空间距离就变小了。事实上,由于上午9点21分汽车正在穿过五十二街,所以距离此时遭劫的银行有两个街区之远。而上午9点36分飞机失事时,汽车在四十七街,距离失事地点有14个街区之远。如此测量相对于汽车的距离,我们会断言,银行遭劫与飞机失事的空间距离为14-2=12个街区,而不是相对于城市建筑所测得的50-34=16个街区。再看看图35a,我们看到,从汽车上记录的距离不能像以前那样从纵轴(交警的世界线)来计算,而应从表示汽车世界线的那条斜线来计算。因此,现在起着新时间轴作用的是后一条线。 把方才讨论的“零七碎八”总结一下就是:要想绘制从运动物体上观察到的事件的时空图,必须把时间轴旋转一个角度(角度的大小取决于运动物体的速度),而空间轴保持不动。 虽然从经典物理学和所谓“常识”的观点来看,这种说法是无可置疑的真理,但它却和我们关于四维时空世界的新观念直接相左。事实上,既然时间被视为独立的第四个坐标,时间轴就必须总是垂直于三个空间轴,无论我们坐在公共汽车上、电车上还是人行道上! 在这一点上,我们只能两种思路选其一:要么保留我们习惯性的时间空间观念,不再对统一的时空几何学作任何进一步思考;要么就必须打破“常识”的旧观念,认为在我们的时空图中,空间轴必须和时间轴一起旋转,从而二者总是保持垂直(图35b)。 然而,正如旋转时间轴在物理上意味着,两个事件的空间距离在从运动物体上观察时会有不同的值(在前面那个例子中分别为12个街区和16个街区),旋转空间轴也意味着,从运动物体上观察到的两个事件的时间间隔不同于从地面上某一固定点观察到的时间间隔。于是,如果市政厅的时钟显示银行遭劫与飞机失事相隔15分钟,那么公共汽车上的乘客的手表所记录的时间间隔将有所不同。这并非因为机械装置的不完美导致两块表走得快慢不一致,而是因为在以不同速度运动的物体上,时间本身的流逝快慢有所不同,记录时间的实际机械装置也相应地变慢了。不过对于公共汽车的低速而言,这种变慢微乎其微,几乎觉察不到。(本章会详细讨论这个现象。) 再举一个例子。设想一个人在一列行进的火车餐车上吃饭。在餐车的服务员看来,他在同一个地方(第三张桌子靠窗)吃餐前开胃品和餐后甜点。但在两个站在铁轨的固定点透过窗户朝车内张望的扳道工看来(一个正好看到他在吃餐前开胃品,另一个正好看到他在吃餐后甜点),这两个事件发生在数英里之遥。于是我们可以说:在一位观察者看来发生在同一地点和不同时间的两个事件,在处于不同运动状态的另一位观察者看来却发生在不同的地点。 从我们所期望的时空等价的观点出发,把上面这句话中的“地点”和“时间”这两个词互换,该句就成了:在一位观察者看来发生在同一时间和不同地点的两个事件,在处于不同运动状态的另一位观察者看来却发生在不同的时间。 如果将其用于我们餐车的例子中,我们会期待那位服务员言之凿凿地声称,坐在餐车两头的两位乘客餐后同时点烟,而在铁轨上透过窗户朝车内张望的扳道工却会坚持说,两人点烟的时间有先有后。 因此,在一位观察者看来同时发生的两个事件,在另一位观察者看来却相隔一段时间。 这些便是四维几何学的必然推论,在四维几何学中,时间和空间仅仅是一段固定不变的四维距离在相应轴上的投影。 二、以太风和天狼星之旅 现在我们要问,愿意使用这种四维几何学的语言,是否证明在我们旧的感觉良好的时空观念中引入这些革命性变化是正当的? 如果回答是肯定的,我们便质疑了整个经典物理学体系,经典物理学的基础是伟大的牛顿在两个半世纪以前对空间和时间的定义:“绝对空间就其本性而言与任何外界的事物无关,永远不变和不动”,“绝对的、真实的数学时间就其本性而言均匀地流逝着,与任何外界的事物无关。”在写这些话的时候,牛顿肯定不认为自己是在讲什么新的或引起争议的东西;他不过是在以精确的语言把人们常识中的空间和时间概念表达出来罢了。事实上,人们对这些经典时空概念的正确性是如此坚信,以至于它们常被哲学家们视为先验的。从来没有一个科学家(更不用说外行)认为它们有可能错误,从而需要重新考察和表述。那么,我们现在为什么要重新考虑这个问题呢? 回答是:之所以要抛弃经典的时空观念并把时间和空间统一在一幅四维图景中,并非出于爱因斯坦纯粹审美的愿望,亦非其无法遏止的数学冲动使然,而是因为实验研究中经常会出现一些难以对付的事实,与独立的时间和空间的经典图景不符。 经典物理学这座似乎永世长存的美丽城堡的基础受到的第一次冲击源于1887年美国物理学家迈克耳孙(Albert Abraham Michelson)所做的一个看起来朴实无华的实验,它几乎震撼了这精巧建筑物的每一块砖石,使其墙壁摇摇欲坠,就像耶利哥的城墙在约书亚的号角声中倒塌一样。迈克耳孙实验的想法非常简单,它基于这样一种物理图像:光在通过所谓“传递光的以太”(一种均匀充满宇宙空间以及所有物体原子之间的假想物质)时,会表现出某种波动性。 将一块石头丢进池塘,水波会沿四面八方传播。振动的音叉发出的声音以波的形式向四面传播,任何明亮物体发出的光也是如此。然而,水面上的波纹清楚地显示了水微粒的运动,声波也已知是声音所穿过的空气或其他物质的振动,但我们却找不到任何传递光波的物质媒介。事实上,(与声音相比)光能在空间中如此轻易地传播,空间似乎是完全空虚的! 然而,倘若没有什么东西在振动,又谈论某种振动的东西,这似乎太不合逻辑。于是,物理学家不得不引入“传递光的以太”这样一个新概念,以便在试图解释光的传播时为“振动”这个动词提供一个实体性的主词。从纯语法的角度来看,任何动词都必须有一个主词,“传递光的以太”的存在性不可能被否认。但——这个“但”要大声强调——语法规则并没有规定也不可能规定,这个为了正确造句而不得不引入的主词具有什么物理性质! 如果我们把“光以太”定义为传播光波的东西,那么说光波在光以太中传播倒是千真万确的,但这是一句完全无谓的重言式。查明这种光以太究竟是什么以及具有什么样的物理性质,乃是完全不同的问题。这里,任何语法都帮不了我们,答案只能来自物理学。 在接下来的讨论中我们会看到,19世纪物理学所犯的最大错误在于假定这种光以太具有类似于我们所熟知的日常物体的那些性质。人们习惯于谈论光以太的流动性、刚性、各种弹性甚至是内摩擦。一方面,光以太在传递光波时表现得像一种振动的固体;28另一方面,它又显示出完全的流动性,对天体的运动毫无阻碍。这样一来,光以太就被类比于封蜡一样的物质:人们知道,封蜡等物质非常坚硬,在迅速的机械撞击之下很容易碎裂;但若静置足够长的时间,又会在自身重量的作用下像蜂蜜一样流动。根据这种类比,旧物理学设想光以太充满了整个宇宙空间,对于与光的传播有关的高速扰动来说表现得像坚硬的固体;而对于在其中穿行、速度比光慢几千倍的行星和恒星来说,却又表现得像液体。 这样一种或可称为拟人化的观点试图把我们所熟知的普通物质的性质归于一种除名称以外一无所有的物质,它从一开始就遭遇了巨大的失败。人们虽然作了许多努力,但仍然无法对光波的这种神秘传递者给出合理的力学解释。 根据我们目前拥有的知识,很容易看出这种努力错在何处。事实上我们知道,普通物质的所有机械性质都可以追溯到构成物质的原子之间的相互作用。例如,水的高度流动性是由于水分子之间可以作摩擦很小的滑动;橡胶的弹性是由于橡胶分子很容易变形;金刚石的坚硬则是由于构成金刚石晶体的碳原子被紧紧地束缚在一种刚性点阵结构中。因此,各种物质所共有的一切机械性质都是缘于它们的原子结构,但这条规则在运用于像光以太这样被认为绝对连续的物质上时是毫无意义的。 光以太是一种特殊类型的物质,它与我们熟知的原子嵌镶结构或通常所说的物质毫无相似性。我们可以把光以太称为一种“物质”(这仅仅因为它充当着“振动”这个动词在语法上的主词),但也可以称之为“空间”。不过要记住,正如我们之前已经看到,之后还会看到的,空间可能具有某种形态特征或结构特征,它比欧几里得几何学中的空间观念复杂得多。事实上在现代物理学中,“光以太”(除去它那些据称的力学性质)和“物理空间”被认为是同义词。 不过我们已经偏离得太远,竟然开始对“光以太”一词进行哲学分析了。现在我们还是回到迈克耳孙实验的话题上来吧。如前所述,这个实验的想法是非常简单的:如果光是在以太中穿行的波,那么地面上的仪器所记录的光速将因为地球在空间中运动而受到影响。站在沿轨道绕日运行的地球上,我们会经验到一股“以太风”,就像即使天晴无风,人站在快速行驶的船的甲板上也会感到有风扑面而来一样。当然,我们是感觉不到“以太风”的,因为它已被假定能够毫无困难地穿透到我们的身体原子之间。但是通过测量沿不同方向相对于我们运动的光速,就应该能够探测到它的存在。众所周知,顺风传播的声音速度比逆风传播的大,因此,顺着以太风传播的光的速度似乎也应当大于逆着以太风传播的光的速度。 做过如此推理之后,迈克耳孙着手设计了一套仪器,能够记录沿各个方向传播的光速的差别。当然,要想做到这一点,最简单的办法是采用前面提到的斐索的仪器(图31c),把它转到不同的方向进行一系列测量。但这样做并不很现实,因为这要求每次测量都有很高的精度。事实上,由于我们所预期的速度差(等于地球的速度)只有光速的万分之一左右,所以必须以极高的准确度来进行每一次测量。 如果你有两根长度大致相同的棒,并想知道其长度究竟相差多少,那么最简单的办法就是把两根棒的一端对齐,在另一端量出差异。这就是所谓的“零点法”。 迈克耳孙的仪器草图如图36所示,它便是利用零点法来比较光沿两个相互垂直的方向的速度差的。 图36 这套仪器的中心部件是一个玻璃片B,上面镀着一层薄薄的半透明的银,可以使入射光的一半发生反射,并让其余的一半透过。于是,光源A发出的光束被B分成两个相互垂直的部分,这两束光分别被与中心玻璃片等距的镜子C和D反射回B。从D返回的光有一部分会穿过银膜,从C返回的光有一部分会被银膜反射,在仪器入口处被分开的这两束光在进入观察者眼睛时会重新结合起来。根据大家所熟知的一条光学定律,这两束光会彼此干涉,形成一套肉眼可见的明暗条纹。如果距离BD与BC相等,两束光将会同时返回中心部件,亮条纹会位于图像中心。如果稍微改变距离,使一束光有所延迟,则条纹就会向左或向右移动。 由于该仪器位于地球表面,而地球正快速穿过空间,所以我们必然会预期,以太风正以地球运动的速度吹过地球。例如,假定这股风沿着从C到B的方向刮去(如图36所示),我们来看看它会给赶往相会地点的两束光的速度造成什么差别。请记住,其中一束光是先逆风后顺风,另一束光则是在风中来回横穿。那么哪一束光先回来呢? 设想河上有一艘汽船逆流而上从1号码头行驶到2号码头,然后再顺流驶回1号码头。水流在前一半航程起阻碍作用,在归程则起辅助作用。你也许认为这两种作用会彼此抵消吧?但事实并非如此。为了理解这一点,设想这艘汽船以水流的速度行驶。在这种情况下,它永远到不了2号码头!不难看到,在所有情况下,水流的存在将使整个航行的时间增加一个因子: , 其中V是船速,v是水流速度。29例如,倘若船速是水流速度的10倍,则整个航行的时间为: , 也就是说,比在静水中的时间长百分之一。 同样,我们也能计算出在河水中来回横渡所耽搁的时间。这里的耽搁是因为要想从1号码头驶到3号码头,船的行驶方向须稍稍倾斜,以补偿在水流中的漂移。在这种情况下,耽搁的时间要少一些,其因子为: 对于上面那个例子来说,时间只增加了0.5%。这个公式很容易证明,有兴趣的读者可以自行验证。现在,将河流替换成流动的以太,将船替换成在其中传播的光波,便可得到迈克耳孙的实验方案。现在,光束从B到C再返回B的时间增加的因子为: , 其中c是光在以太中的传播速度。而光束从B到D再返回B的时间增加的因子则为: 。 由于以太风的速度等于地球运动的速度,为每秒30公里,光的速度为每秒30万公里,因此这两束光将分别延迟0.01%和0.005%。因此,借助于迈克耳孙的仪器,光束逆着以太风行进和顺着以太风行进的速度差异是很容易观察到的。 然而,在作这项实验时,迈克耳孙竟然未看到干涉条纹有丝毫移动,可以想见他当时是何等惊讶! 显然,无论光是沿着以太风传播,还是横穿以太风,以太风对光速都没有影响。 这个事实太让人惊讶,迈克耳孙起初还不敢相信,但一次次地精心重复实验无可置疑地表明,他最初得到的结果虽然令人惊讶,却是正确的。 对这个出乎意料的结果,唯一可能的解释似乎就是大胆假设,迈克耳孙那张安装镜子的巨大石桌沿着地球穿过空间的方向有轻微的收缩(所谓的菲茨杰拉德收缩30)。事实上,如果距离BC收缩了一个因子 而距离BD保持不变,那么两束光的耽搁时间就变得相同了,因此便不会出现所预期的干涉条纹移动。 然而,迈克耳孙那张桌子有可能收缩,这话说起来容易,理解起来难。的确,我们会预料在有阻滞介质中运动的物体会有某种收缩,比如由于船尾螺旋桨的驱动力和船头水的阻力,在湖上行驶的汽船会有些微的压缩。不过,这种机械压缩的程度依赖于造船材料的抗拉强度,钢制船体的压缩程度会比木制船体小一些。然而,导致迈克耳孙实验中否定结果的收缩只依赖于运动速度,而丝毫不依赖于所涉材料的抗拉强度。倘若安装镜子的那张桌子并非由石头制成,而是由铸铁、木头或其他任何材料制成的,收缩的量也将完全一样。因此很显然,我们这里讨论的是一种普遍效应,它使所有运动物体都以完全相同的程度发生收缩。或者按照爱因斯坦教授1904年对这种现象的描述,我们这里讨论的是空间本身的收缩。所有以相同速度运动的物体都会以相同的方式收缩,这仅仅是因为它们都被嵌在同一个收缩的空间中。 关于空间的性质,我们在前面两章已经谈了不少,以使上述陈述听起来显得合理。为把情况说得更清楚一些,可以设想空间具有弹性胶冻的某些性质,其中留有不同物体边界的痕迹;当空间由于受到挤压、拉伸或扭转而变形时,所有嵌在其中的物体的形状会自动以同一种方式发生改变。这些因空间变形而导致的变形不同于各种外力所导致的个体变形,外力在变形的物体内部产生了应力和应变。图37显示的二维情况也许有助于解释这种重要的区别。 图37 空间收缩效应虽然对于理解物理学的基本原理非常重要,但在日常生活中却几乎未受注意,这是因为与光速相比,我们在日常经验中遇到的最高速度仍然微不足道。例如,一辆以每小时50英里的速度行驶的汽车,其长度只减小到原来的 倍,这相当于汽车从头到尾只减少了一个原子核的直径那么长!一架时速超过600英里的喷气式飞机,其长度只减少了一个原子直径那么长。就连时速超过25000英里的100米长的星际火箭,其长度也只是减少了百分之一毫米。 不过,如果设想物体以光速的50%、90%和99%运动,其长度将分别缩短为静止长度的86%、45%和14%。 所有高速运动物体的这种相对论收缩效应可见于一位不知名作者所写的一首打油诗: 菲斯克小伙剑术精, 出剑迅速如流星, 由于菲茨杰拉德收缩性, 长剑变成小铁钉。 当然,这位菲斯克先生出剑必须快如闪电才行! 根据四维几何学的观点,很容易把所有运动物体的这种普遍收缩解释为时空坐标系的旋转使物体不变的四维长度的空间投影发生了改变。事实上,根据上一节讨论的内容,你一定还记得,从运动系统所作的观察必须通过空间轴和时间轴都旋转某个角度(角度的大小取决于速度)的坐标来描述。因此,如果在静止系统中,四维距离百分之百地投影在空间轴上(图38a),那么在新的坐标轴中,它的空间投影总会更短(图38b)。 图38 请务必记住,所预期的长度缩短只和两个系统的相对运动有关。如果所考虑的物体相对于第二个系统静止,因此表示为一条与新空间轴平行的长度不变的线,那么它在原空间轴上的投影将缩短同样的倍数。 因此,指明两个坐标系中哪一个“真正”在运动不仅没必要,而且没有物理意义。重要的仅仅是它们在作相对运动。于是,假定未来某个“星际交通公司”的两艘高速行驶的载人飞船在地球与土星之间的某地相遇,每艘飞船上的乘客透过舷窗都能看到另一艘飞船显著变短了,而自己乘坐的这艘飞船却注意不到有什么收缩。争论哪艘飞船“真正”缩短了是没有意义的,因为无论哪艘飞船,在另一艘飞船上的乘客看来都缩短了,而在它自己的乘客看来却没有缩短。31 四维时空理论也使我们明白,为什么运动物体速度接近光速时,才会有明显的相对论收缩。事实上,时空坐标轴旋转的角度取决于运动系统走过的距离与所需时间之比。如果用米来测量距离,用秒来测量时间,那么这个比值就是用米/秒表示的常用速度。然而,四维世界中的时间间隔是用普通的时间间隔乘以光速表示的,而决定旋转角度的比值又是用米/秒表示的运动速度除以用同样的单位表示的光速,因此只有当两个运动系统的相对速度接近光速时,旋转角度及其对距离测量的影响才会变得显著。 时空坐标系的旋转既影响了长度测量,影响了对时间间隔的测量。但可以表明,由于第四个坐标具有特殊的虚数性,32空间距离缩短时,时间间隔会膨胀。如果把一只钟安置于一辆高速行驶的汽车中,它将比安置在地面上的钟走得慢些,相继两次嘀嗒声的时间间隔会加长。和长度的缩短一样,运动时钟的变慢也是一种普遍效应,只取决于运动速度。因此,无论是最现代的手表,还是你祖父的旧式摆钟,抑或是计时沙漏,只要运动速度相同,变慢的程度就会相同。当然,这种效应并不限于被我们称为“钟”和“表”的特殊机械;事实上,所有物理过程、化学过程或生理过程都将以相同的程度变慢。因此,如果你在疾驰的飞船上煮鸡蛋做早餐,你不必担心因手表走得太慢而把鸡蛋煮老了,因为鸡蛋内部的过程也会相应地变慢。如果你看着表把鸡蛋煮上五分钟,你仍然能吃上平日里吃的“五分钟蛋”。这里我们之所以用飞船而不是火车餐车作例子,是因为时间膨胀也和长度的收缩一样,只有在速度接近光速时才变得比较明显。时间膨胀的因子也和空间收缩一样是。区别在于,这里不是把它用作乘数,而是用作除数。如果一个物体运动得非常快,以至于长度减少了一半,那么时间间隔会变成两倍长。 运动系统中时间速度的变慢会对星际旅行产生一个有趣的影响。假设你决定造访距离太阳系9光年的天狼星的一颗行星,并且乘坐了一艘几乎能以光速行驶的飞船。你自然会以为,天狼星的往返之旅至少需要18年,因此准备随身携带大量食物。不过,如果你乘坐的飞船真能以接近光速的速度行驶,这种担心就是完全没有必要的。事实上,如果你以光速的99.999 999 99%移动,你的手表、心脏、呼吸、消化和心理过程都将减慢70 000倍,因此从地球到天狼星再返回地球(在留在地球上的人看来)所花的18年在你看来将只有几个小时。事实上,如果你吃过早饭就从地球出发,那么当你的飞船降落在天狼星的一颗行星表面上时,你正好可以吃中饭。如果你时间很紧,吃过午饭就马上返航,那么你很可能赶得上在地球上吃晚饭。不过,如果你忘了相对论定律,你到家时定会大吃一惊,因为亲友们会认为你已在太空中不知所踪,因此已经自行吃过6570顿晚饭了!由于你正以近乎光速的速度旅行,地球上的18年对你而言只是一天而已。 那么,运动得比光还快会怎么样呢?对这个问题的回答亦可见于一首相对论打油诗: 年轻女孩名伯蕾, 健步如飞光难追; 爱因斯坦来指点, 今日出行昨夜归。 的确,如果速度接近光速可以使运动系统中的时间变慢,那么超过光速不就能把时间倒转了吗!此外,由于毕达哥拉斯根式下面代数符号的改变,时间坐标会变成实数,从而成为空间距离;一如超光速系统中的所有长度都经过零而变成虚数,从而成为时间间隔。 如果所有这一切是可能的,图33中那个爱因斯坦变尺为钟的戏法就会成为现实了,只要在此过程中他能设法超过光速。 不过,物理世界虽然荒唐,但并非那么疯狂。这种魔术式的操作显然是不可能实现的,这可以简单地总结为:任何物体都不能以光速或超光速运动。 这条基本自然定律的物理学基础在于一个已被无数实验直接证明的事实,即在运动速度接近光速时,运动物体所谓的惯性质量(反映了物体对进一步加速的机械反抗)会无限增大。于是,如果一颗子弹以光速的99.999 999 99%运动,它对进一步加速的反抗就相当于一枚12英寸的炮弹;如果以光速的99.999 999 999 999 99%运动,这颗小子弹的惯性反抗将会相当于一辆满载的卡车。无论给这颗子弹施加多大努力,我们也无法征服最后一位小数,使其速度正好等于宇宙中所有运动的速度上限即光速! 三、弯曲空间和重力之谜 看完前面这几十页关于四维坐标系的讨论,读者们必定感到头晕脑胀,对此我深表歉意。现在,我邀请读者到弯曲空间中散个步。人人都知道曲线和曲面是什么,但“弯曲空间”又是什么意思呢?这种现象之所以难以想象,与其说在于这个概念的不同寻常,不如说在于我们能从外部观察曲线和曲面,却只能从内部来观察三维空间的曲率,因为我们本身就在三维空间之中。为了理解一个三维的人如何来构想他所处的空间的曲率,我们先来考虑生活在表面上的假想的二维影子生物的状况。图39a和39b中有一些影子科学家,他们在“平面世界”和“曲面(球面)世界”上研究自己二维空间的几何学。可供研究的最简单的几何图形当然是三角形,即由连接三个几何点的三条直线所组成的图形。大家在中学几何学里都学过,平面上画的任何平面三角形的三个内角之和都是180°。但很容易看到,上述定理并不适用于在球面上画的三角形。的确,由两条经线和一条纬线所形成的球面三角形就有两个直角的底角,顶角的值则可介于0°与360°之间。以图39b中那两个影子科学家所研究的三角形为例,三个角之和等于210°。于是我们看到,通过测量其二维世界中的几何图形,影子科学家们无须从外面观察便可发现那个世界的曲率。 将上述观察运用于又多了一维的世界,我们自然能够得出结论说,生活在三维空间中的人类科学家无须跃入第四维,只要测量连接其空间中三点的三条直线之间的夹角便可确定那个空间的曲率。如果三个角之和等于180°,那么空间就是平坦的,否则就是弯曲的。 不过在作进一步讨论之前,我们先要弄清楚“直线”一词是什么意思。看到图39a和图39b所示的两个三角形,读者们也许会说,平面三角形(图39a)的各边是真正的直线,而球面上的各边(图39b)则是球面上大圆33的弧,其实是弯曲的。 图39 “平面世界”和“曲面世界”上的二维科学家们正在检查关于三角形内角和的欧几里得定理 这种基于我们常识几何学观念的说法会使影子科学家们根本不可能发展出他们二维空间的几何学。直线概念需要一种更一般的数学定义,使它不仅能在欧几里得几何中获得一席之地,还能把表面和空间中更复杂的线包括进来。要想作这样一种推广,可以把直线定义为某个表面或空间中描绘两点之间最短距离的线。在平面几何中,上述定义当然符合我们常见的直线概念;而在更复杂的曲面的情况下,它会引出一族定义明确的线,在这里所起的作用就如同普通“直线”在欧几里得几何中所起的作用。为了避免误解,我们常常把描绘曲面上最短距离的线称为测地线,因为这种观念最早是在测地学——即测量地球表面的科学——中被引入的。事实上,当我们谈起纽约与旧金山的直线距离时,我们是指“笔直地”沿着地球表面的曲线走,而不是像一台巨型钻机那样笔直地钻透地球。 这种把“广义直线”或“测地线”看成两点之间最短距离的定义暗示,作这种线有一种简单的物理方法,那就是在两点之间拉紧一根绳子。如果在平面上做,你会得到一条普通的直线;如果在球面上做,你会发现这根绳子沿着一个大圆的弧张紧,它对应于球面上的测地线。 通过类似的办法,我们也可以查明我们所身处的三维空间是平坦的还是弯曲的。我们只需在空间中的三个点之间拉紧绳子,看看由此形成的三个角之和是否等于180°。不过,在设计这样一个实验时必须记住两点:一是实验必须在非常大的尺度上进行,因为曲面或弯曲空间的一个微小部分对我们来说可能显得很平坦,我们显然不能通过在后院里测量出来的结果来确定地球表面的曲率;二是此表面或空间也许在某些区域是平坦的,而在另一些区域是弯曲的,因此可能需要作完整的测量。 爱因斯坦在创立关于弯曲空间的广义理论时包含了一个了不起的想法,那就是假定物理空间在巨大的质量附近会变弯曲;质量越大,曲率就越大。为了用实验来验证这个假说,我们可以环绕一座大山钉三个木桩,在木桩之间拉紧绳子(图40a),然后测量绳子在三个木桩处形成的夹角。即使选择了最大的山,哪怕是喜马拉雅山,你也会发现,考虑到可能的测量误差,三个角之和将正好等于180°。但这个结果并不必然意味着爱因斯坦是错的,并不表明大质量的存在不会使其周围的空间发生弯曲,因为即使是喜马拉雅山,可能也不会使周围的空间弯曲到能用我们最精密的测量仪器记录下来。大家还记得伽利略试图用遮光灯测量光速时的惨败吧!(图31) 图40 因此不要灰心,找个更大的质量再试一次,比如太阳。 如果你在地球上某个点拴根绳子扯到一颗恒星上去,再从这颗恒星扯到另一颗恒星上,然后再回到地球上原来那个点,并让太阳围在绳子组成的三角形内。你瞧,这下要成功了!你会看到,这三个角之和将与180°有显著不同。如果你没有足够长的绳子来作这项实验,可以把绳子换成一束光线,因为光学告诉我们,光总是走所有可能路线中最短的。 图40b是这项测量光线夹角的实验的示意图。位于太阳两侧的恒星SI和SII发出的光线会聚到经纬仪中,这样便测出了它们的夹角。然后等太阳离开时再重复进行实验,并把两个角度加以比较。如果有所不同,就证明太阳的质量改变了其周围空间的曲率,使光线偏离了原路。这个实验最初是爱因斯坦为了检验自己的理论而提出来的。将它与图41所示的二维类比相比较,读者们可以获得更好的理解。 图41 在通常条件下做爱因斯坦的这项实验显然有一个实际障碍:耀眼的太阳光使我们看不到它周围的星星。不过在日全食期间,星星在白天也是清晰可见的。1919 年,一支英国天文远征队前往西非的普林西比群岛进行实际检验,那里是当年日全食的最佳观测地点。结果发现,两颗恒星的角距离在有太阳和没有太阳介于其间的情况下相差1.61“±0.30“。而爱因斯坦的理论预言这个值为1.75“。后来所做的各种远征也得到了类似的观测结果。 当然,1.5角 ✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜未完待续>>>完整版请登录大玄妙门网✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜✜